scholarly journals Hemispheric ozone variability indices derived from satellite observations and as diagnostics for coupled chemistry-climate models

2006 ◽  
Vol 6 (3) ◽  
pp. 5671-5709
Author(s):  
T. Erbertseder ◽  
V. Eyring ◽  
M. Bittner ◽  
M. Dameris ◽  
V. Grewe

Abstract. Dynamics and chemistry of the lower and middle stratosphere are characterized by manifold processes on different scales in time and space. The total column density of ozone, measured by numerous instruments, can be used to trace the resulting variability. In particular, satellite-borne spectrometers allow global observation of the total ozone distribution with proven accuracy and high temporal and spatial resolution. In order to analyse the zonal and hemispherical ozone variability a spectral statistical Harmonic Analysis is applied to multi-year total ozone observations from the Total Ozone Monitoring Spectrometer (TOMS). As diagnostic variables we introduce the hemispheric ozone variability indices one and two. They are defined as the hemispheric means of the amplitudes of the zonal waves number one and two, respectively, as traced by the total ozone field. In order to demonstrate the capability of the diagnostic for intercomparison studies we apply the hemispheric ozone variability indices to evaluate total ozone fields of the coupled chemistry-climate model ECHAM4.L39(DLR)/CHEM (hereafter: E39/C) against satellite observations. Results of a multi-year model simulation representing ''2000" climate conditions with an updated version of E39/C and corresponding total ozone data of TOMS from 1996 to 2004 (Version 8.0) are used. It is quantified to what extent E39/C is able to reproduce the zonal and hemispherical large scale total ozone variations. The different representations of the hemispheric ozone variability indices are discussed. Summarizing the main differences of model and reference observations, we show that both indices, one and two, in E39/C are preferably too high in the Northern Hemisphere and preferably too low in the Southern Hemisphere. In the Northern Hemisphere, where the coincidence is generally better, E39/C produces a too strong planetary wave one activity in winter and spring as well as a too high interannual variability. For the Southern Hemisphere we conclude that model and observations differ significantly during the ozone hole season. In October and November amplitudes of wave number one and two are underestimated. This explains that E39/C exhibits a too stable polar vortex and a too low interannual variability of the ozone hole. Further, a strong negative bias of wave number one amplitudes in the tropics and subtropics from October to December is identified, which may also contribute to the zonal-symmetric polar vortex. The lack of wave two variability in October and November leads to weak vortex elongation and eventually a too late final warming. Contrary, too high wave number two amplitudes in July and August indicate why the polar vortex is formed too late in season by E39/C. In general, the hemispheric ozone variability indices can be regarded as a simple and robust approach to quantify differences in total ozone variability on a monthly mean basis. Therefore, the diagnostic represents a core diagnostic for model intercomparisons within the CCM Validation Activity for WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) regarding stratospheric dynamics.

2006 ◽  
Vol 6 (12) ◽  
pp. 5105-5120 ◽  
Author(s):  
T. Erbertseder ◽  
V. Eyring ◽  
M. Bittner ◽  
M. Dameris ◽  
V. Grewe

Abstract. Total column ozone is used to trace the dynamics of the lower and middle stratosphere which is governed by planetary waves. In order to analyse the planetary wave activity a Harmonic Analysis is applied to global multi-year total ozone observations from the Total Ozone Monitoring Spectrometer (TOMS). As diagnostic variables we introduce the hemispheric ozone variability indices one and two. They are defined as the hemispheric means of the amplitudes of the zonal waves number one and two, respectively, as traced by the total ozone field. The application of these indices as a simple diagnostic for the evaluation of coupled chemistry-climate models (CCMs) is demonstrated by comparing results of the CCM ECHAM4.L39(DLR)/CHEM (hereafter: E39/C) against satellite observations. It is quantified to what extent a multi-year model simulation of E39/C (representing "2000" climate conditions) is able to reproduce the zonal and hemispheric planetary wave activity derived from TOMS data (1996–2004, Version 8). Compared to the reference observations the hemispheric ozone variability indices one and two of E39/C are too high in the Northern Hemisphere and too low in the Southern Hemisphere. In the Northern Hemisphere, where the agreement is generally better, E39/C produces too strong a planetary wave one activity in winter and spring and too high an interannual variability. For the Southern Hemisphere we reveal that the indices from observations and model differ significantly during the ozone hole season. The indices are used to give reasons for the late formation of the Antarctic ozone hole, the insufficient vortex elongation and eventually the delayed final warming in E39/C. In general, the hemispheric ozone variability indices can be regarded as a simple and robust diagnostic to quantify model-observation differences concerning planetary wave activity. It allows a first-guess on how the dynamics is represented in a model simulation before applying costly and more specific diagnostics.


2021 ◽  
Vol 21 (2) ◽  
pp. 617-633
Author(s):  
Martin Dameris ◽  
Diego G. Loyola ◽  
Matthias Nützel ◽  
Melanie Coldewey-Egbers ◽  
Christophe Lerot ◽  
...  

Abstract. Ozone data derived from the Tropospheric Monitoring Instrument (TROPOMI) sensor on board the Sentinel-5 Precursor satellite show exceptionally low total ozone columns in the polar region of the Northern Hemisphere (Arctic) in spring 2020. Minimum total ozone column values around or below 220 Dobson units (DU) were seen over the Arctic for 5 weeks in March and early April 2020. Usually the persistence of such low total ozone column values in spring is only observed in the polar Southern Hemisphere (Antarctic) and not over the Arctic. These record low total ozone columns were caused by a particularly strong polar vortex in the stratosphere with a persistent cold stratosphere at higher latitudes, a prerequisite for ozone depletion through heterogeneous chemistry. Based on the ERA5, which is the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis, the Northern Hemisphere winter 2019/2020 (from December to March) showed minimum polar cap temperatures consistently below 195 K around 20 km altitude, which enabled enhanced formation of polar stratospheric clouds. The special situation in spring 2020 is compared and discussed in context with two other Northern Hemisphere spring seasons, namely those in 1997 and 2011, which also displayed relatively low total ozone column values. However, during these years, total ozone columns below 220 DU over several consecutive days were not observed in spring. The similarities and differences of the atmospheric conditions of these three events and possible explanations for the observed features are presented and discussed. It becomes apparent that the monthly mean of the minimum total ozone column value for March 2020 (221 DU) was clearly below the respective values found in March 1997 (267 DU) and 2011 (252 DU), which highlights the special evolution of the polar stratospheric ozone layer in the Northern Hemisphere in spring 2020. A comparison with a typical ozone hole over the Antarctic (e.g., in 2016) indicates that although the Arctic spring 2020 situation is remarkable, with total ozone column values around or below 220 DU observed over a considerable area (up to 0.9 million km2), the Antarctic ozone hole shows total ozone columns typically below 150 DU over a much larger area (of the order of 20 million km2). Furthermore, total ozone columns below 220 DU are typically observed over the Antarctic for about 4 months.


2012 ◽  
Vol 12 (6) ◽  
pp. 2865-2879 ◽  
Author(s):  
V. O. Kravchenko ◽  
O. M. Evtushevsky ◽  
A. V. Grytsai ◽  
A. R. Klekociuk ◽  
G. P. Milinevsky ◽  
...  

Abstract. Stratospheric preconditions for the annual Antarctic ozone hole are analyzed using the amplitude of quasi-stationary planetary waves in temperature as a predictor of total ozone column behaviour. It is found that the quasi-stationary wave amplitude in August is highly correlated with September–November total ozone over Antarctica with correlation coefficient (r) as high as 0.83 indicating that quasi-stationary wave effects in late winter have a persisting influence on the evolution of the ozone hole during the following three months. Correlation maxima are found in both the lower and middle stratosphere. These likely result from the influence of wave activity on ozone depletion due to chemical processes, and ozone accumulation due to large-scale ozone transport, respectively. Both correlation maxima indicate that spring total ozone tends to increase in the case of amplified activity of quasi-stationary waves in late winter. Since the stationary wave number one dominates the planetary waves that propagate into the Antarctic stratosphere in late austral winter, it is largely responsible for the stationary zonal asymmetry of the ozone hole relative to the South Pole. Processes associated with zonally asymmetric ozone and temperature which possibly contribute to differences in the persistence and location of the correlation maxima are discussed.


1996 ◽  
Vol 14 (4) ◽  
pp. 464-467 ◽  
Author(s):  
R. P. Kane

Abstract. The 12-month running means of the surface-to-500 mb precipitable water obtained from analysis of radiosonde data at seven selected locations showed three types of variability viz: (1) quasi-biennial oscillations; these were different in nature at different latitudes and also different from the QBO of the stratospheric tropical zonal winds; (2) decadal effects; these were prominent at middle and high latitudes and (3) linear trends; these were prominent at low latitudes, up trends in the Northern Hemisphere and downtrends in the Southern Hemisphere.


2021 ◽  
Author(s):  
Michal Kozubek ◽  
Peter Krizan

<p>An exceptionally strong sudden stratospheric warming (SSW) in the Southern Hemisphere (SH) during September 2019 was observed. Because SSW in the SH is very rare, comparison with the only recorded major SH SSW is done. According to World Meteorological Organization (WMO) definition, the SSW in 2019 has to be classified as minor. The cause of SSW in 2002 was very strong activity of stationary planetary wave with zonal wave-number (ZW) 2, which reached its maximum when the polar vortex split into two circulations with polar temperature enhancement by 30 K/week and it penetrated deeply to the lower stratosphere and upper troposphere. On the other hand, the minor SSW in 2019 involved an exceptionally strong wave-1 planetary wave and a large polar temperature enhancement by 50.8 K/week, but it affected mainly the middle and upper stratosphere. The strongest SSW in the Northern Hemisphere was observed in 2009. This study provides comparison of two strongest SSW in the SH and the strongest SSW in the NH to show difference between two hemispheres and possible impact to the lower or higher layers.</p>


2009 ◽  
Vol 22 (24) ◽  
pp. 6653-6678 ◽  
Author(s):  
Ming Zhao ◽  
Isaac M. Held ◽  
Shian-Jiann Lin ◽  
Gabriel A. Vecchi

Abstract A global atmospheric model with roughly 50-km horizontal grid spacing is used to simulate the interannual variability of tropical cyclones using observed sea surface temperatures (SSTs) as the lower boundary condition. The model’s convective parameterization is based on a closure for shallow convection, with much of the deep convection allowed to occur on resolved scales. Four realizations of the period 1981–2005 are generated. The correlation of yearly Atlantic hurricane counts with observations is greater than 0.8 when the model is averaged over the four realizations, supporting the view that the random part of this annual Atlantic hurricane frequency (the part not predictable given the SSTs) is relatively small (<2 hurricanes per year). Correlations with observations are lower in the east, west, and South Pacific (roughly 0.6, 0.5, and 0.3, respectively) and insignificant in the Indian Ocean. The model trends in Northern Hemisphere basin-wide frequency are consistent with the observed trends in the International Best Track Archive for Climate Stewardship (IBTrACS) database. The model generates an upward trend of hurricane frequency in the Atlantic and downward trends in the east and west Pacific over this time frame. The model produces a negative trend in the Southern Hemisphere that is larger than that in the IBTrACS. The same model is used to simulate the response to the SST anomalies generated by coupled models in the World Climate Research Program Coupled Model Intercomparison Project 3 (CMIP3) archive, using the late-twenty-first century in the A1B scenario. Results are presented for SST anomalies computed by averaging over 18 CMIP3 models and from individual realizations from 3 models. A modest reduction of global and Southern Hemisphere tropical cyclone frequency is obtained in each case, but the results in individual Northern Hemisphere basins differ among the models. The vertical shear in the Atlantic Main Development Region (MDR) and the difference between the MDR SST and the tropical mean SST are well correlated with the model’s Atlantic storm frequency, both for interannual variability and for the intermodel spread in global warming projections.


2017 ◽  
Vol 9 (1) ◽  
pp. 74-88 ◽  
Author(s):  
Huaijun Wang ◽  
Yingping Pan ◽  
Yaning Chen

Abstract This investigation examined effects of climate change, measured as annual, seasonal, and monthly air temperature and precipitation from 1958 to 2010, on water resources (i.e., runoff) in the Bosten Lake Basin. Additionally, teleconnections of hydrological changes to large-scale circulation indices including El Nino Southern Oscillation (ENSO), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Tibetan High (XZH), westerly circulation index (WI), and northern hemisphere polar vortex area index (VPA) were analyzed in our study. The results showed the following. (1) Annual and seasonal air temperature increased significantly in the Bosten Lake Basin. Precipitation exhibited an increasing trend, while the significance was less than that of temperature. Abrupt changes were observed in 1996 in mountain temperature and in 1985 in plain temperature. (2) Runoff varied in three stages, decreasing before 1986, increasing from 1987 to 2003, and decreasing after 2003. (3) Precipitation and air temperature have significant impacts on runoff. The hydrological processes in the Bosten Lake Basin were (statistically) significantly affected by the northern hemisphere polar vortex area index (VPA) and the Tibetan High (XZH). The results of this study are good indicators of local climate change, which can enhance human mitigation of climate warming in the Bosten Lake Basin.


2014 ◽  
Vol 14 (21) ◽  
pp. 11775-11790 ◽  
Author(s):  
W. Sun ◽  
P. Hess ◽  
B. Tian

Abstract. The Madden–Julian Oscillation (MJO) is the dominant form of the atmospheric intra-seasonal oscillation, manifested by slow eastward movement (about 5 m s−1) of tropical deep convection. This study investigates the MJO's impact on equatorial tropospheric ozone (10° N–10° S) in satellite observations and chemical transport model (CTM) simulations. For the satellite observations, we analyze the Tropospheric Emission Spectrometer (TES) level-2 ozone profile data for the period of January 2004 to June 2009. For the CTM simulations, we run the Community Atmosphere Model with chemistry (CAM-chem) driven by the Goddard Earth Observing System Model, Version 5 (GEOS-5)-analyzed meteorological fields for the same data period as the TES measurements. Our analysis indicates that the behavior of the total tropospheric column (TTC) ozone at the intra-seasonal timescale is different from that of the total column ozone, with the signal in the equatorial region comparable with that in the subtropics. The model-simulated and satellite-measured ozone anomalies agree in their general pattern and amplitude when examined in the vertical cross section (the average spatial correlation coefficient among the eight phases is 0.63), with an eastward propagation signature at a similar phase speed as the convective anomalies (5 m s−1). The model ozone anomalies on the intra-seasonal timescale are about 5 times larger when lightning emissions of NOx are included in the simulation than when they are not. Nevertheless, large-scale advection is the primary driving force for the ozone anomalies associated with the MJO. The variability related to the MJO for ozone reaches up to 47% of the total variability (ranging from daily to interannual), indicating that the MJO should be accounted for in simulating ozone perturbations in the tropics.


Sign in / Sign up

Export Citation Format

Share Document