scholarly journals Quasi-stationary planetary waves in late winter Antarctic stratosphere temperature as a possible indicator of spring total ozone

2012 ◽  
Vol 12 (6) ◽  
pp. 2865-2879 ◽  
Author(s):  
V. O. Kravchenko ◽  
O. M. Evtushevsky ◽  
A. V. Grytsai ◽  
A. R. Klekociuk ◽  
G. P. Milinevsky ◽  
...  

Abstract. Stratospheric preconditions for the annual Antarctic ozone hole are analyzed using the amplitude of quasi-stationary planetary waves in temperature as a predictor of total ozone column behaviour. It is found that the quasi-stationary wave amplitude in August is highly correlated with September–November total ozone over Antarctica with correlation coefficient (r) as high as 0.83 indicating that quasi-stationary wave effects in late winter have a persisting influence on the evolution of the ozone hole during the following three months. Correlation maxima are found in both the lower and middle stratosphere. These likely result from the influence of wave activity on ozone depletion due to chemical processes, and ozone accumulation due to large-scale ozone transport, respectively. Both correlation maxima indicate that spring total ozone tends to increase in the case of amplified activity of quasi-stationary waves in late winter. Since the stationary wave number one dominates the planetary waves that propagate into the Antarctic stratosphere in late austral winter, it is largely responsible for the stationary zonal asymmetry of the ozone hole relative to the South Pole. Processes associated with zonally asymmetric ozone and temperature which possibly contribute to differences in the persistence and location of the correlation maxima are discussed.

2011 ◽  
Vol 11 (10) ◽  
pp. 28945-28967
Author(s):  
V. O. Kravchenko ◽  
O. M. Evtushevsky ◽  
A. V. Grytsai ◽  
A. R. Klekociuk ◽  
G. P. Milinevsky ◽  
...  

Abstract. Stratospheric preconditions for the annual Antarctic ozone hole are analysed using the amplitude of quasi-stationary planetary waves in temperature as a predictor of total ozone column behaviour. It is found that the quasi-stationary wave amplitude in August is highly correlated with September–November total ozone over Antarctica with correlation coefficient as high as 0.83 indicating that quasi-stationary wave effects in late winter have a persisting influence on the evolution of the ozone hole during the following three months. Correlation maxima are found in both the lower and middle stratosphere. They are likely manifestations of wave activity influence on chemical ozone depletion and large-scale ozone transport, respectively. Both correlation maxima indicate that spring total ozone tends to increase in the case of amplified activity of quasi-stationary waves in late winter.


2006 ◽  
Vol 6 (3) ◽  
pp. 5671-5709
Author(s):  
T. Erbertseder ◽  
V. Eyring ◽  
M. Bittner ◽  
M. Dameris ◽  
V. Grewe

Abstract. Dynamics and chemistry of the lower and middle stratosphere are characterized by manifold processes on different scales in time and space. The total column density of ozone, measured by numerous instruments, can be used to trace the resulting variability. In particular, satellite-borne spectrometers allow global observation of the total ozone distribution with proven accuracy and high temporal and spatial resolution. In order to analyse the zonal and hemispherical ozone variability a spectral statistical Harmonic Analysis is applied to multi-year total ozone observations from the Total Ozone Monitoring Spectrometer (TOMS). As diagnostic variables we introduce the hemispheric ozone variability indices one and two. They are defined as the hemispheric means of the amplitudes of the zonal waves number one and two, respectively, as traced by the total ozone field. In order to demonstrate the capability of the diagnostic for intercomparison studies we apply the hemispheric ozone variability indices to evaluate total ozone fields of the coupled chemistry-climate model ECHAM4.L39(DLR)/CHEM (hereafter: E39/C) against satellite observations. Results of a multi-year model simulation representing ''2000" climate conditions with an updated version of E39/C and corresponding total ozone data of TOMS from 1996 to 2004 (Version 8.0) are used. It is quantified to what extent E39/C is able to reproduce the zonal and hemispherical large scale total ozone variations. The different representations of the hemispheric ozone variability indices are discussed. Summarizing the main differences of model and reference observations, we show that both indices, one and two, in E39/C are preferably too high in the Northern Hemisphere and preferably too low in the Southern Hemisphere. In the Northern Hemisphere, where the coincidence is generally better, E39/C produces a too strong planetary wave one activity in winter and spring as well as a too high interannual variability. For the Southern Hemisphere we conclude that model and observations differ significantly during the ozone hole season. In October and November amplitudes of wave number one and two are underestimated. This explains that E39/C exhibits a too stable polar vortex and a too low interannual variability of the ozone hole. Further, a strong negative bias of wave number one amplitudes in the tropics and subtropics from October to December is identified, which may also contribute to the zonal-symmetric polar vortex. The lack of wave two variability in October and November leads to weak vortex elongation and eventually a too late final warming. Contrary, too high wave number two amplitudes in July and August indicate why the polar vortex is formed too late in season by E39/C. In general, the hemispheric ozone variability indices can be regarded as a simple and robust approach to quantify differences in total ozone variability on a monthly mean basis. Therefore, the diagnostic represents a core diagnostic for model intercomparisons within the CCM Validation Activity for WCRP's (World Climate Research Programme) SPARC (Stratospheric Processes and their Role in Climate) regarding stratospheric dynamics.


2006 ◽  
Vol 19 (8) ◽  
pp. 1531-1544 ◽  
Author(s):  
Naoki Sato ◽  
Masaaki Takahashi

Abstract Statistical features of quasi-stationary planetary waves were examined on the subtropical jet in the midsummer Northern Hemisphere by using objectively analyzed data and satellite data. As a result, a quasi-stationary wave train that is highly correlated with the midsummer climate over Japan was identified. A clear phase dependency of the appearance of waves was also confirmed. An analysis of temporal evolution and wave activity flux revealed that the eastward propagation of the wave packet starts in the Middle East, passes over East Asia, and reaches North America. The anomaly pattern is strengthened through kinetic energy conversion near the entrance of the Asian jet over the Middle East. The interaction between the anomaly pattern and the basic field contributes to the appearance of the anomalous wavelike pattern. Although the wave train is correlated with the anomaly of convective activity over the western North Pacific and the Indian Ocean, it is implied that internal dynamics are important in determining the statistical features of the appearance of anomalous quasi-stationary waves on the subtropical jet.


2008 ◽  
Vol 26 (5) ◽  
pp. 1101-1108 ◽  
Author(s):  
A. V. Grytsai ◽  
O. M. Evtushevsky ◽  
G. P. Milinevsky

Abstract. Anomalies in the Antarctic total ozone and amplitudes of the quasi-stationary planetary waves in the lower stratosphere temperature during the winter and spring of 1988 and 2002 have been compared. Westward displacement of the quasi-stationary wave (QSW) extremes by 50°–70° relative to the preceding years of the strong stratospheric polar vortex in 1987 and 2001, respectively, was observed. A dependence of the quasi-stationary wave ridge and trough positions on the strength of the westerly zonal wind in the lower stratosphere is shown. Comparison of the QSW amplitude in the lower stratosphere temperature in July and August shows that the amplitude distribution with latitude in August could be considered as a possible indication of the future anomalous warming in Antarctic spring. In August 2002, the QSW amplitude of 10 K at the edge region of the polar vortex (60° S–65° S) preceded the major warming in September, whereas in August 1988, the highest 7 K amplitude at 55° S preceded the large warming in the next months. These results suggest that the peak value of the lower stratosphere temperature QSW amplitude and the peak latitudinal position in late winter can influence the southern polar vortex strength in spring.


2011 ◽  
Vol 68 (4) ◽  
pp. 904-917 ◽  
Author(s):  
Stefan Sobolowski ◽  
Gavin Gong ◽  
Mingfang Ting

Abstract Continental-scale snow cover represents a broad thermal forcing on monthly-to-intraseasonal time scales, with the potential to modify local and remote atmospheric circulation. A previous GCM study reported robust transient-eddy responses to prescribed anomalous North American (NA) snow cover. The same set of experiments also indicated a robust upper-level stationary wave response during spring, but the nature of this response was not investigated until now. Here, the authors diagnose a deep, snow-induced, tropospheric cooling over NA and hypothesize that this may represent a pathway linking snow to the stationary wave response. A nonlinear stationary wave model is shown to reproduce the GCM stationary wave response to snow more accurately than a linear model, and results confirm that diabatic cooling is the primary driver of the stationary wave response. In particular, the total nonlinear effects due to cooling, and its interactions with transient eddies and orography, are shown to be essential for faithful reproduction of the GCM response. The nonlinear model results confirm that direct effects due to transients and orography are modest. However, with interactions between forcings included, the total effects due to these terms make important contributions to the total response. Analysis of observed NA snow cover and stationary waves is qualitatively similar to the patterns generated by the GCM and linear/nonlinear stationary wave models, indicating that the snow-induced signal is not simply a modeling artifact. The diagnosis and description of a snow–stationary wave relationship adds to the understanding of stationary waves and their forcing mechanisms, and this relationship suggests that large-scale changes in the land surface state may exert considerable influence on the atmosphere over hemispheric scales and thereby contribute to climate variability.


Author(s):  
Chenning Zhang ◽  
Oleksandr Evtushevsky ◽  
Gennadi Milinevsky

The 10-year climatology (2011–2020) of quasi-stationary planetary waves in the mid-latitude stratosphere and mesosphere (40–50N, up to 90 km) has been analyzed. Longitude–altitude sections of geopotential height and ozone have been obtained using the Aura MLS satellite data. It is found that stationary wave 1 propagates into the mesosphere from the North American High and Icelandic Low, which are adjacent surface pressure anomalies in the structure of stationary wave 2. Unexpectedly, the strongest pressure anomaly in the Aleutian Low region does not contribute to the stationary wave 1 formation in the mesosphere. The vertical phase transformations of stationary waves in geopotential height and ozone show inconsistencies that should be studied separately.


2021 ◽  
pp. 1-53
Author(s):  
ZHE WANG ◽  
JIANKAI ZHANG ◽  
TAO WANG ◽  
WUHU FENG ◽  
YIHANG HU ◽  
...  

AbstractThe factors responsible for the size of Antarctic ozone hole in November are analyzed. Comparing two samples of anomalously large and small November ozone hole with respect to 1980–2017 climatology in November, the results show that the anomalously large ozone hole in austral late winter is not a precondition for the anomalously large ozone hole in November. The size of Antarctic ozone hole in November is mainly influenced by dynamical processes from the end of October to mid-November. During large November ozone hole events, weaker dynamical ozone transport appears from the end of October to mid-November, which is closely related to planetary wave divergence in the stratosphere between 60°S and 90°S. Further analyses indicate that the wave divergence is partially attributed to less upward propagation of planetary waves from the troposphere, which is associated with weak baroclinic disturbances at the end of October. Subsequently, zonal wind speed in the upper stratosphere intensifies, and the distance between critical layer (U=0) and wave reflecting surfaces becomes larger. As a result, more planetary waves are reflected and then wave divergence enhances. The processes responsible for the anomalously small Antarctic ozone holes in November are almost opposite to those for the anomalously large Antarctic ozone holes.


2013 ◽  
Vol 31 (8) ◽  
pp. 1397-1415 ◽  
Author(s):  
V. Matthias ◽  
P. Hoffmann ◽  
A. Manson ◽  
C. Meek ◽  
G. Stober ◽  
...  

Abstract. The Northern Hemispheric winter is disturbed by large scale variability mainly caused by Planetary Waves (PWs), which interact with the mean flow and thus result in Sudden Stratospheric Warmings (SSWs). The effects of a SSW on the middle atmosphere are an increase of stratospheric and a simultaneous decrease of mesospheric temperature as well as a wind reversal to westward wind from the mesosphere to the stratosphere. In most cases these disturbances are strongest at polar latitudes, get weaker toward the south and vanish at mid-latitudes around 50° to 60° N as for example during the winter 2005/06. However, other events like in 2009, 2010 and 2012 show a similar or even stronger westward wind at mid- than at polar latitudes either in the mesosphere or in the stratosphere during the SSW. This study uses local meteor and MF-radar measurements, global satellite observations from the Microwave Limb Sounder (MLS) and assimilated model data from MERRA (Modern-ERA Retrospective analysis for research and Applications). We compare differences in the latitudinal structure of the zonal wind, temperature and PW activity between a "normal" event, where the event in 2006 was chosen representatively, and the latitudinal displaced events in 2009, 2010 and 2012. A continuous westward wind band between the pole and 20° N is observed during the displaced events. Furthermore, distinctive temperature differences at mid-latitudes occur before the displaced warmings compared to 2006 as well as a southward extended stratospheric warming afterwards. These differences between the normal SSW in 2006 and the displaced events in 2009, 2010 and 2012 are linked to an increased PW activity between 30° N and 50° N and the changed stationary wave flux in the stratosphere around the displaced events compared to 2006.


2008 ◽  
Vol 8 (24) ◽  
pp. 7557-7570 ◽  
Author(s):  
M. G. Shepherd ◽  
T. Tsuda

Abstract. The global structure and propagation of large-scale (periods >5 days) waves in the Southern Hemisphere summer (December 2006–February 2007) at 60° S–75° S latitude are examined using temperature data from GPS radio occultation measurements by COSMIC/FORMOSAT 3 satellite constellation at 20 km and 30 km altitude. Spectral analysis has revealed eastward propagating planetary scale perturbations with wavenumbers 1 and 2 and periods of 10, 16 and 23 days, and stationary waves with wavenumbers 1 and 2. The results obtained show a very dynamically active Antarctic summer stratosphere. The novel aspect of the work is in the use of the GPS COSMIC data providing multiple local times each day, thus allowing large-scale wave analysis at high Southern latitudes and revealing planetary wave activity not normally observed in summer, but more consistent with late winter and spring conditions in the stratosphere.


2021 ◽  
Author(s):  
Qiyun Ma ◽  
Christian L. E. Franzke

AbstractEuropean heat waves result from large-scale stationary waves and have major impacts on the economy and mortality. However, the dynamical processes leading to and maintaining heat waves are still not well understood. Here we use a nonlinear stationary wave model (NSWM) to examine the role played by anomalous stationary waves and how they are forced during heat waves. For our study, we use the Japanese Reanalysis (JRA-55) data for the period 1958 through 2017. We show that the NSWM can successfully reproduce the main features of the observed anomalous stationary waves in the upper troposphere. Our results indicate that the dynamics of heat waves are nonlinear, and transient momentum fluxes are the primary drivers of the observed anomalous stationary waves. The contribution from orographic forcing is moderate and mainly through nonlinear interactions with diabatic heating. Further decomposition of the transients indicates that the high-frequency transient vorticity fluxes make dominant contributions. Furthermore, our results reveal that the response to heating located in the tropical Indian Ocean and the west Pacific region is primarily responsible for maintaining the observed anomalous stationary waves linked to European heat waves. This is confirmed by exploring the relationship between heat waves and the Indian Ocean Dipole strength. The heating in the mid-latitude and tropical Atlantic region plays a secondary role. Our results suggest that European heat waves are potentially predictable by considering the nonlinear effects involved in anomalous stationary waves and the heating sources in the nearby and remote tropical region.


Sign in / Sign up

Export Citation Format

Share Document