scholarly journals Development of a global model of mineral dust aerosol microphysics

2008 ◽  
Vol 8 (6) ◽  
pp. 18765-18802
Author(s):  
Y. H. Lee ◽  
K. Chen ◽  
P. J. Adams

Abstract. A mineral dust module is developed and implemented into the global aerosol microphysics model, GISS-TOMAS. The model is evaluated against long-term measurements of dust surface mass concentrations and deposition fluxes. Predicted mass concentrations and deposition fluxes are in error on average by a factor of 3 and 5, respectively. The comparison shows that the model performs better near the dust source regions but underestimates surface concentrations and deposition fluxes in more remote regions. For example, including only sites with measured dust concentrations of at least 0.5 μg m−3, the model prediction agrees with observations to within a factor of 2. It was hypothesized that the lifetime of dust, 2.6 days in our base case, is too short and causes the underestimation in remote areas. However, a sensitivity simulation with smaller dust particles and increased lifetime, 3.7 days, does not significantly improve the comparison. We conclude that the underestimation of mineral dust in remote areas results from local factors and sources not well described by the dust source function and/or the GCM meteorology. The effect of dust aerosols on CCN(0.2%) concentrations is negligible in most regions of the globe; however, CCN(0.2%) concentrations decrease by 10–20% in dusty regions as a result of coagulational scavenging of CCN particles by dust and a decrease in H2SO4 condensation to CCN particles due to the additional surface area of dust.

2009 ◽  
Vol 9 (7) ◽  
pp. 2441-2458 ◽  
Author(s):  
Y. H. Lee ◽  
K. Chen ◽  
P. J. Adams

Abstract. A mineral dust module is developed and implemented into the global aerosol microphysics model, GISS-TOMAS. The model is evaluated against long-term measurements of dust surface mass concentrations and deposition fluxes. Predicted mass concentrations and deposition fluxes are in error on average by a factor of 3 and 5, respectively. The comparison shows that the model performs better near the dust source regions but underestimates surface concentrations and deposition fluxes in more remote regions. Including only sites with measured dust concentrations of at least 0.5 μg m−3, the model prediction agrees with observations to within a factor of 2. It was hypothesized that the lifetime of dust, 2.6 days in our base case, is too short and causes the underestimation in remote areas. However, a sensitivity simulation with smaller dust particles and increased lifetime, 3.7 days, does not significantly improve the comparison. These results suggest that the underestimation of mineral dust in remote areas may result from local factors/sources not well described by the global dust source function used here or the GCM meteorology. The effect of dust aerosols on CCN(0.2%) concentrations is negligible in most regions of the globe; however, CCN(0.2%) concentrations change decrease by 10–20% in dusty regions the impact of dust on CCN(0.2%) concentrations in dusty regions is very sensitive to the assumed size distribution of emissions. If emissions are predominantly in the coarse mode, CCN(0.2%) decreases in dusty regions up to 10–20% because dust competes for condensable H2SO4, reducing the condensational growth of ultrafine mode particles to CCN sizes. With significant fine mode emissions, however, CCN(0.2%) doubles in Saharan source regions because the direct emission of dust particles outweighs any microphysical feedbacks. The impact of dust on CCN concentrations active at various water supersaturations is also investigated. Below 0.1%, CCN concentrations increase significantly in dusty regions due to the presence of coarse dust particles. Above 0.2%, CCN concentrations show a similar behavior as CCN(0.2%).


2018 ◽  
Author(s):  
Stelios Myriokefalitakis ◽  
Akinori Ito ◽  
Maria Kanakidou ◽  
Athanasios Nenes ◽  
Maarten C. Krol ◽  
...  

Abstract. This work reports on the current status of global modelling of iron (Fe) deposition fluxes and atmospheric concentrations and analyses of the differences between models, as well as between models and observations. A total of four global 3-D chemistry-transport (CTMs) and general circulation (GCMs) models have participated in this intercomparison, in the framework of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Working Group 38, The Atmospheric Input of Chemicals to the Ocean. The global total Fe (TFe) emissions strength in the models is equal to ~ 72 Tg-Fe yr−1 (38–134 Tg-Fe yr−1) from mineral dust sources and around 2.1 Tg-Fe yr−1 (1.8–2.7 Tg-Fe yr−1) from combustion processes (sum of anthropogenic combustion/biomass burning and wildfires). The mean global labile Fe (LFe) source strength in the models, considering both the primary emissions and the atmospheric processing, is calculated to be 0.7 (±0.3) Tg-Fe yr−1, accounting for mineral dust and combustion aerosols together. The multi model ensemble global TFe and LFe deposition fluxes into the global ocean are calculated to be ~ 15 Tg-Fe yr−1 and ~ 0.3 Tg-Fe yr−1, respectively. The model intercomparison analysis indicates that the representation of the atmospheric Fe cycle varies among models, in terms of both the magnitude of natural and combustion Fe emissions as well as the complexity of atmospheric processing parametrizations of Fe-containing aerosols. The model comparison with aerosol Fe observations over oceanic regions indicate that most models overestimate surface level TFe mass concentrations near the dust source regions and tend to underestimate the low concentrations observed in remote ocean regions. All models are able to simulate the tendency of higher Fe loading near and downwind from the dust source regions, with the mean normalized bias for the Northern Hemisphere (~ 14), larger than the Southern Hemisphere (~ 2.4) for the ensemble model mean. This model intercomparison and model–observation comparison study reveals two critical issues in LFe simulations that require further exploration: 1) the Fe-containing aerosol size distribution and 2) the relative contribution of dust and combustion sources of Fe to labile Fe in atmospheric aerosols over the remote oceanic regions.


2018 ◽  
Vol 15 (21) ◽  
pp. 6659-6684 ◽  
Author(s):  
Stelios Myriokefalitakis ◽  
Akinori Ito ◽  
Maria Kanakidou ◽  
Athanasios Nenes ◽  
Maarten C. Krol ◽  
...  

Abstract. This work reports on the current status of the global modeling of iron (Fe) deposition fluxes and atmospheric concentrations and the analyses of the differences between models, as well as between models and observations. A total of four global 3-D chemistry transport (CTMs) and general circulation (GCMs) models participated in this intercomparison, in the framework of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Working Group 38, “The Atmospheric Input of Chemicals to the Ocean”. The global total Fe (TFe) emission strength in the models is equal to ∼72 Tg Fe yr−1 (38–134 Tg Fe yr−1) from mineral dust sources and around 2.1 Tg Fe yr−1 (1.8–2.7 Tg Fe yr−1) from combustion processes (the sum of anthropogenic combustion/biomass burning and wildfires). The mean global labile Fe (LFe) source strength in the models, considering both the primary emissions and the atmospheric processing, is calculated to be 0.7 (±0.3) Tg Fe yr−1, accounting for both mineral dust and combustion aerosols. The mean global deposition fluxes into the global ocean are estimated to be in the range of 10–30 and 0.2–0.4 Tg Fe yr−1 for TFe and LFe, respectively, which roughly corresponds to a respective 15 and 0.3 Tg Fe yr−1 for the multi-model ensemble model mean. The model intercomparison analysis indicates that the representation of the atmospheric Fe cycle varies among models, in terms of both the magnitude of natural and combustion Fe emissions as well as the complexity of atmospheric processing parameterizations of Fe-containing aerosols. The model comparison with aerosol Fe observations over oceanic regions indicates that most models overestimate surface level TFe mass concentrations near dust source regions and tend to underestimate the low concentrations observed in remote ocean regions. All models are able to simulate the tendency of higher Fe concentrations near and downwind from the dust source regions, with the mean normalized bias for the Northern Hemisphere (∼14), larger than that of the Southern Hemisphere (∼2.4) for the ensemble model mean. This model intercomparison and model–observation comparison study reveals two critical issues in LFe simulations that require further exploration: (1) the Fe-containing aerosol size distribution and (2) the relative contribution of dust and combustion sources of Fe to labile Fe in atmospheric aerosols over the remote oceanic regions.


2013 ◽  
Vol 13 (7) ◽  
pp. 19649-19700 ◽  
Author(s):  
C. Zhao ◽  
S. Chen ◽  
L. R. Leung ◽  
Y. Qian ◽  
J. Kok ◽  
...  

Abstract. This study examines the uncertainties in simulating mass balance and radiative forcing of mineral dust due to biases in the dust size parameterization. Simulations are conducted quasi-globally (180° W–180° E and 60° S–70° N) using the WRF-Chem model with three different approaches to represent dust size distribution (8-bin, 4-bin, and 3-mode). The biases in the 3-mode or 4-bin approaches against a relatively more accurate 8-bin approach in simulating dust mass balance and radiative forcing are identified. Compared to the 8-bin approach, the 4-bin approach simulates similar but coarser size distributions of dust particles in the atmosphere, while the 3-mode approach retains more fine dust particles but fewer coarse dust particles due to its prescribed σg of each mode. Although the 3-mode approach yields up to 10 days longer dust mass lifetime over the remote oceanic regions than the 8-bin approach, the three size approaches produce similar dust mass lifetime (3.2 days to 3.5 days) on quasi-global average, reflecting that the global dust mass lifetime is mainly determined by the dust mass lifetime near the dust source regions. With the same global dust emission (∼6000 Tg yr-1), the 8-bin approach produces a dust mass loading of 39 Tg, while the 4-bin and 3-mode approaches produce 3% (40.2 Tg) and 25% (49.1 Tg) higher dust mass loading, respectively. The difference in dust mass loading between the 8-bin approach and the 4-bin or 3-mode approaches has large spatial variations, with generally smaller relative difference (<10%) near the surface over the dust source regions. The three size approaches also result in significantly different dry and wet deposition fluxes and number concentrations of dust. The difference in dust aerosol optical depth (AOD) (a factor of 3) among the three size approaches is much larger than their difference (25%) in dust mass loading. Compared to the 8-bin approach, the 4-bin approach yields stronger dust absorptivity, while the 3-mode approach yields weaker dust absorptivity. Overall, on quasi-global average, the three size parameterizations result in a significant difference of a factor of 2∼3 in dust surface cooling (-1.02∼-2.87 W m-2) and atmospheric warming (0.39∼0.96 W m-2) and in a tremendous difference of a factor of ∼10 in dust TOA cooling (-0.24∼-2.20 W m-2). An uncertainty of a factor of 2 is quantified in dust emission estimation due to the different size parameterizations. This study also highlights the uncertainties in modeling dust mass and number loading, deposition fluxes, and radiative forcing resulting from different size parameterizations, and motivates further investigation of the impact of size parameterizations on modeling dust impacts on air quality, climate, and ecosystem.


2016 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. D. García ◽  
O. E. García ◽  
E. Cuevas ◽  
V. E. Cachorro ◽  
A. Barreto ◽  
...  

Abstract. This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  >  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.


2013 ◽  
Vol 13 (8) ◽  
pp. 21801-21835
Author(s):  
K. Osada ◽  
S. Ura ◽  
M. Kagawa ◽  
M. Mikami ◽  
T. Y. Tanaka ◽  
...  

Abstract. Data of temporal variations and spatial distributions of mineral dust deposition fluxes are very limited in terms of duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition by wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008–December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyzer. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m−2 yr−1) and at Cape Hedo (1.7 g m−2 yr−1) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (>60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m−2 yr−1) and at Cape Hedo (2.0 g m−2 yr−1) as average values in 2009 and 2010. Although the seasonal tendency of the monthly dry deposition amount roughly resembled that of monthly days of Kosa dust events, the monthly amount of dry deposition was not proportional to monthly days of the events. Comparison of dry deposition fluxes with vertical distribution of dust particles deduced from Lidar data and coarse particle concentrations suggested that the maximum dust layer height or thickness is an important factor for controlling the dry deposition amount after long-range transport of dust particles. Size distributions of refractory dust particles were obtained using four-stage filtration: >20, >10, >5, and >1 μm diameter. Weight fractions of the sum of >20 μm and 10–20 μm (giant fraction) were higher than 50% for most of the event samples. Irrespective of the deposition type, the giant dust fractions were decreasing generally with increasing distance from the source area, suggesting the selective depletion of larger giant particles during atmospheric transport. Because giant dust particles are an important mass fraction of dust accumulation, especially in the north Pacific where is known as a high-nutrient, low-chlorophyll (HNLC) region, the transport height of giant dust particles is an important factor for studying dust budgets in the atmosphere and their role in biogeochemical cycles.


2013 ◽  
Vol 13 (14) ◽  
pp. 7097-7114 ◽  
Author(s):  
L. Zhang ◽  
Q. B. Li ◽  
Y. Gu ◽  
K. N. Liou ◽  
B. Meland

Abstract. Atmospheric mineral dust particles exert significant direct radiative forcings and are important drivers of climate and climate change. We used the GEOS-Chem global three-dimensional chemical transport model (CTM) coupled with the Fu-Liou-Gu (FLG) radiative transfer model (RTM) to investigate the dust radiative forcing and heating rate based on different vertical profiles for April 2006. We attempt to actually quantify the sensitivities of radiative forcing to dust vertical profiles, especially the discrepancies between using realistic and climatological vertical profiles. In these calculations, dust emissions were constrained by observations of aerosol optical depth (AOD). The coupled calculations utilizing a more realistic dust vertical profile simulated by GEOS-Chem minimize the physical inconsistencies between 3-D CTM aerosol fields and the RTM. The use of GEOS-Chem simulated vertical profile of dust extinction, as opposed to the FLG prescribed vertical profile, leads to greater and more spatially heterogeneous changes in the estimated radiative forcing and heating rate produced by dust. Both changes can be attributed to a different vertical structure between dust and non-dust source regions. Values of the dust vertically resolved AOD per grid level (VRAOD) are much larger in the middle troposphere, though smaller at the surface when the GEOS-Chem simulated vertical profile is used, which leads to a much stronger heating rate in the middle troposphere. Compared to the FLG vertical profile, the use of GEOS-Chem vertical profile reduces the solar radiative forcing at the top of atmosphere (TOA) by approximately 0.2–0.25 W m−2 over the African and Asian dust source regions. While the Infrared (IR) radiative forcing decreases 0.2 W m−2 over African dust belt, it increases 0.06 W m−2 over the Asian dust belt when the GEOS-Chem vertical profile is used. Differences in the solar radiative forcing at the surface between the use of the GEOS-Chem and FLG vertical profiles are most significant over the Gobi desert with a value of about 1.1 W m−2. The radiative forcing effect of dust particles is more pronounced at the surface over the Sahara and Gobi deserts by using FLG vertical profile, while it is less significant over the downwind area of Eastern Asia.


2021 ◽  
Author(s):  
Sujung Go ◽  
Alexei Lyapustin ◽  
Gregory L. Schuster ◽  
Myungje Choi ◽  
Paul Ginoux ◽  
...  

Abstract. The iron-oxide content of dust in the atmosphere and most notably its apportionment between hematite (α-Fe2O3) and goethite (α-FeOOH) are key determinants in quantifying dust's light absorption, its top of atmosphere UV radiances used for dust monitoring, and ultimately shortwave dust direct radiative effects (DRE). Hematite and goethite column mass concentrations and iron-oxide mass fractions of total dust mass concentration were retrieved from the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) measurements in the ultraviolet–visible (UV–Vis) channels. The retrievals were performed for dust-identified aerosol plumes using aerosol optical depth (AOD) and spectral imaginary refractive index provided by the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm over six continental regions (North America, North Africa, West Asia, Central Asia, East Asia, and Australia). The dust particles are represented as an internal mixture of non-absorbing host and absorbing hematite and goethite. We use the Maxwell–Garnett effective medium approximation with carefully selected complex refractive indices of hematite and goethite that produce mass fractions of iron oxides species consistent with in situ values found in the literature to derive the hematite and goethite volumetric/mass concentrations from MAIAC EPIC products. We compared the retrieved hematite and goethite concentrations with in situ dust aerosol mineralogical content measurements, as well as with published data. Our data display variations within the published range of hematite, goethite, and iron-oxide mass fractions for pure mineral dust cases. A specific analysis is presented for 15 sites over the main dust source regions. Sites in the central Sahara, Sahel, and Middle East exhibit a greater temporal variability of iron oxides relative to other sites. Niger site (13.52° N, 2.63° E) is dominated by goethite over Harmattan season with median of ~2 weight percentage (wt.%) of iron-oxide. Saudi Arabia site (27.49° N, 41.98° E) over Middle East also exhibited surge of goethite content with the beginning of Shamal season. The Sahel dust is richer in iron-oxide than Saharan and northern China dust except in Summer. The Bodélé Depression area shows a distinctively lower iron-oxide concentration (~1 wt. %) throughout the year. Finally, we show that EPIC data allow to constrain the hematite refractive index. Specifically, we select 5 out of 13 different number of hematite refractive indices widely variable in published laboratory studies by constraining the iron-oxide mass ratio to the known measured values. Provided climatology of hematite and goethite mass fractions across main dust regions of the Earth will be useful for dust shortwave DRE studies and climate modeling. 


Sign in / Sign up

Export Citation Format

Share Document