scholarly journals Monitoring aerosol–cloud interactions at the CESAR Observatory in the Netherlands

2017 ◽  
Vol 10 (5) ◽  
pp. 1987-1997 ◽  
Author(s):  
Karolina Sarna ◽  
Herman W. J. Russchenberg

Abstract. The representation of aerosol–cloud interaction (ACI) processes in climate models, although long studied, still remains the source of high uncertainty. Very often there is a mismatch between the scale of observations used for ACI quantification and the ACI process itself. This can be mitigated by using the observations from ground-based remote sensing instruments. In this paper we presented a direct application of the aerosol–cloud interaction monitoring technique (ACI monitoring). ACI monitoring is based on the standardised Cloudnet data stream, which provides measurements from ground-based remote sensing instruments working in synergy. For the data set collected at the CESAR Observatory in the Netherlands we calculate ACI metrics. We specifically use attenuated backscatter coefficient (ATB) for the characterisation of the aerosol properties and cloud droplet effective radius (re) and number concentration (Nd) for the characterisation of the cloud properties. We calculate two metrics: ACIr  =  ln(re)/ln(ATB) and ACIN  =  ln(Nd)/ln(ATB). The calculated values of ACIr range from 0.001 to 0.085, which correspond to the values reported in previous studies. We also evaluated the impact of the vertical Doppler velocity and liquid water path (LWP) on ACI metrics. The values of ACIr were highest for LWP values between 60 and 105 g m−2. For higher LWP other processes, such as collision and coalescence, seem to be dominant and obscure the ACI processes. We also saw that the values of ACIr are higher when only data points located in the updraught regime are considered. The method presented in this study allow for monitoring ACI daily and further aggregating daily data into bigger data sets.

2016 ◽  
Vol 9 (3) ◽  
pp. 1039-1050 ◽  
Author(s):  
Karolina Sarna ◽  
Herman W. J. Russchenberg

Abstract. A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution measurements from a lidar, a radar and a radiometer, which allow us to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example case studies were chosen from the Atmospheric Radiation Measurement (ARM) Program deployment on Graciosa Island, Azores, Portugal, in 2009 to present the method. We use the cloud droplet effective radius (re) to represent cloud microphysical properties and an integrated value of the attenuated backscatter coefficient (ATB) below the cloud to represent the aerosol concentration. All data from each case study are divided into bins of the liquid water path (LWP), each 10 g m−2 wide. For every LWP bin we present the correlation coefficient between ln re and ln ATB, as well as ACIr (defined as ACIr = −d ln re∕d ln ATB, change in cloud droplet effective radius with aerosol concentration). Obtained values of ACIr are in the range 0.01–0.1. We show that ground-based remote sensing instruments used in synergy can efficiently and continuously monitor aerosol–cloud interactions.


2016 ◽  
Author(s):  
K. Sarna ◽  
H. W. J. Russchenberg

Abstract. The representation of aerosol–cloud interactions (ACI) processes in the climate models, although long studied, still remains the source of high uncertainty. Very often there is a mismatch between the scale of observations used for ACI quantification and the ACI process itself. This can be changed by using the observations from ground-based remote sensing instruments. In this paper we presented a direct application of the Aerosol–Cloud Interactions monitoring technique (ACI monitoring). ACI monitoring is based on the standardized Cloudnet data stream, which provides measurements from ground-based remote sensing instruments working in synergy. For the dataset collected at the CESAR Observatory in the Netherlands we calculate ACI metrics. We use specifically attenuated backscatter coefficient (ATB) for the characterisation of the aerosol properties and cloud droplets effective radius (re) and number concentration (Nd) for the characterisation of the cloud properties. We calculate two metrics: ACIr = ln(re)/ln(ATB) and ACIN = ln(Nd)/ln(ATB). The calculated values of ACIr were ranging from 0.016 to 0.17, which corresponds to the values reported in previous studies. We also evaluated impact of the updraft and liquid water path (LWP) on ACI metrics. The values of ACIr were highest for the LWP between 50 and 100 g/m2 . For the higher LWP other processes, such as collision and coalescence, seem to be dominant and obscure the ACI processes. We also saw that the values of ACIr are higher when only data points located in the updraft area are considered. The method presented in this study enables monitoring aerosol–cloud interactions daily and further aggregating daily data into bigger datasets.


2016 ◽  
Vol 16 (23) ◽  
pp. 15413-15424 ◽  
Author(s):  
Takuro Michibata ◽  
Kentaroh Suzuki ◽  
Yousuke Sato ◽  
Toshihiko Takemura

Abstract. Aerosol–cloud interactions are one of the most uncertain processes in climate models due to their nonlinear complexity. A key complexity arises from the possibility that clouds can respond to perturbed aerosols in two opposite ways, as characterized by the traditional “cloud lifetime” hypothesis and more recent “buffered system” hypothesis. Their importance in climate simulations remains poorly understood. Here we investigate the response of the liquid water path (LWP) to aerosol perturbations for warm clouds from the perspective of general circulation model (GCM) and A-Train remote sensing, through process-oriented model evaluations. A systematic difference is found in the LWP response between the model results and observations. The model results indicate a near-global uniform increase of LWP with increasing aerosol loading, while the sign of the response of the LWP from the A-Train varies from region to region. The satellite-observed response of the LWP is closely related to meteorological and/or macrophysical factors, in addition to the microphysics. The model does not reproduce this variability of cloud susceptibility (i.e., sensitivity of LWP to perturbed aerosols) because the parameterization of the autoconversion process assumes only suppression of rain formation in response to increased cloud droplet number, and does not consider macrophysical aspects that serve as a mechanism for the negative responses of the LWP via enhancements of evaporation and precipitation. Model biases are also found in the precipitation microphysics, which suggests that the model generates rainwater readily even when little cloud water is present. This essentially causes projections of unrealistically frequent and light rain, with high cloud susceptibilities to aerosol perturbations.


2016 ◽  
Author(s):  
Takuro Michibata ◽  
Kentaroh Suzuki ◽  
Yousuke Sato ◽  
Toshihiko Takemura

Abstract. Aerosol–cloud interactions are one of the most uncertain processes in climate models due to their nonlinear complexity. A key complexity arises from the possibility that clouds can respond to perturbed aerosols in two opposite ways, as characterized by the traditional "cloud lifetime" hypothesis and more recent "buffered system" hypothesis. Their importance in climate simulations remains poorly understood. Here we investigate the response of the liquid water path (LWP) to aerosol perturbations for warm clouds from the perspective of general circulation model (GCM) and A-Train remote sensing, through process-oriented model evaluations. A systematic difference is found in the LWP response between the model results and observations. The model results indicate a near-global uniform increase of LWP with increasing aerosol loading, while the sign of the response of the LWP from the A-Train varies from region to region. The satellite-observed response of the LWP is closely related to meteorological/macrophysical factors, in addition to the microphysics. The model does not reproduce this variability of cloud susceptibility (i.e., sensitivity of LWP to perturbed aerosols) because the parameterization of the autoconversion process assumes only suppression of rain formation in response to increased cloud droplet number, and does not consider macrophysical aspects that serve as a mechanism for the negative responses of the LWP via enhancements of evaporation and precipitation. Model biases are also found in the precipitation microphysics, which suggests that the model generates rainwater readily even when little cloud water is present. This essentially causes projections of unrealistically frequent and light rain, with high cloud susceptibilities to aerosol perturbations.


2017 ◽  
Vol 17 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Cheng Zhou ◽  
Joyce E. Penner

Abstract. Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.


2015 ◽  
Vol 8 (4) ◽  
pp. 4307-4323
Author(s):  
P. Wu ◽  
X. Dong ◽  
B. Xi

Abstract. In this study, we retrieve and document drizzle properties, and investigate the impact of drizzle on cloud property retrievals from ground-based measurements at the ARM Azores site from June 2009 to December 2010. For the selected cloud and drizzle samples, the drizzle occurrence is 42.6% with a maximum of 55.8% in winter and a minimum of 35.6% in summer. The annual means of drizzle liquid water path LWPd, effective radius rd, and number concentration Nd for the rain (virga) samples are 5.48 (1.29) g m−2, 68.7 (39.5) μm, and 0.14 (0.38) cm−3. The seasonal mean LWPd values are less than 4% of the MWR-retrieved LWP values. The annual mean differences in cloud-droplet effective radius with and without drizzle are 0.12 and 0.38 μm, respectively, for the virga and rain samples. Therefore, we conclude that the impact of drizzle on cloud property retrievals is insignificant at the ARM Azores site.


2008 ◽  
Vol 12 ◽  
pp. 165-170 ◽  
Author(s):  
A. Yatagai ◽  
P. Xie ◽  
P. Alpert

Abstract. We show an algorithm to construct a rain-gauge-based analysis of daily precipitation for the Middle East. One of the key points of our algorithm is to construct an accurate distribution of climatology. One possible advantage of this product is to validate high-resolution climate models and/or to diagnose the impact of climate changes on local hydrological resources. Many users are familiar with a monthly precipitation dataset (New et al., 1999) and a satellite-based daily precipitation dataset (Huffman et al., 2001), yet our data set, unlike theirs, clearly shows the effect of orography on daily precipitation and other extreme events, especially over the Fertile Crescent region. Currently the Middle-East precipitation analysis product is consisting of a 25-year data set for 1979–2003 based on more than 1300 stations.


Author(s):  
Hanii Takahashi ◽  
Alejandro Bodas-Salcedo ◽  
Graeme Stephens

AbstractThe latest configuration of the Hadley Centre Global Environmental Model version 3 (HadGEM3) contains significant changes in the formulation of warm rain processes and aerosols. We evaluate the impacts of these changes in the simulation of warm rain formation processes using A-Train observations. We introduce a new model evaluation tool, quartile-based Contoured Frequency by Optical Depth Diagrams (CFODDs), in order to fill in some blind spots that conventional CFODDs have. Results indicate that HadGEM3 has weak linkage between the size of particle radius and warm rain formation processes, and switching to the new warm rain microphysics scheme causes more difference in warm rain formation processes than switching to the new aerosol scheme through reducing overly produced drizzle mode in HadGEM3. Finally, we run an experiment in which we perturb the second aerosol indirect effect (AIE) to study the rainfall-aerosol interaction in HadGEM3. Since the large changes in the cloud droplet number concentration (CDNC) appear in the AIE experiment, a large impact in warm rain diagnostics is expected. However, regions with large fractional changes in CDNC show a muted change in precipitation, arguably because large-scale constraints act to reduce the impact of such a big change in CDNC. The adjustment in cloud liquid water path to the AIE perturbation produces a large negative shortwave forcing in the midlatitudes.


2014 ◽  
Vol 7 (8) ◽  
pp. 2757-2773 ◽  
Author(s):  
M. Costa-Surós ◽  
J. Calbó ◽  
J. A. González ◽  
C. N. Long

Abstract. The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.


2019 ◽  
Vol 19 (12) ◽  
pp. 7955-7971 ◽  
Author(s):  
Hailing Jia ◽  
Xiaoyan Ma ◽  
Yangang Liu

Abstract. In situ aircraft measurements obtained during the VAMOS (Variability of the American Monsoons) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) field campaign are analyzed to study the aerosol–cloud interactions in the stratocumulus clouds over the southeastern Pacific Ocean (SEP), with a focus on three understudied topics (separation of aerosol effects from dynamic effects, dispersion effects, and turbulent entrainment-mixing processes). Our analysis suggests that an increase in aerosol concentration tends to simultaneously increase both cloud droplet number concentration (Nd) and relative dispersion (ε), while an increase in vertical velocity (w) often increases Nd but decreases ε. After constraining the differences of cloud dynamics, the positive correlation between ε and Nd becomes stronger, implying that perturbations of w could weaken the aerosol influence on ε and hence result in an underestimation of dispersion effect. A comparative analysis of the difference of cloud microphysical properties between the entrainment and non-entrainment zones suggests that the entrainment-mixing mechanism is predominantly extremely inhomogeneous in the stratocumulus that capped by a sharp inversion, whereby the variation in liquid water content (25 %) is similar to that of Nd (29 %) and the droplet size remains approximately constant. In entrainment zone, drier air entrained from the top induces fewer cloud droplets with respect to total in-cloud particles (0.56±0.22) than the case in the non-entrainment zone (0.73±0.13) by promoting cloud droplet evaporation. This study is helpful in reducing uncertainties in dispersion effects and entrainment mixing for stratocumulus, and the results of this study may benefit cloud parameterizations in global climate models to more accurately assess aerosol indirect effects.


Sign in / Sign up

Export Citation Format

Share Document