scholarly journals Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign

2017 ◽  
Vol 10 (1) ◽  
pp. 247-264 ◽  
Author(s):  
Aditya Choukulkar ◽  
W. Alan Brewer ◽  
Scott P. Sandberg ◽  
Ann Weickmann ◽  
Timothy A. Bonin ◽  
...  

Abstract. Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies. In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scan geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time–space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty. It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. It was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.

2016 ◽  
Author(s):  
Aditya Choukulkar ◽  
Alan Brewer ◽  
Scott P. Sandberg ◽  
Ann Weickmann ◽  
Timothy A. Bonin ◽  
...  

Abstract. Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow, but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO from 2 March–31 May 2015 brought together a large suite of in-situ and remote sensing measurement platforms to evaluate complex flow measurement strategies. In this paper, measurement uncertainties for different single and multi-Doppler strategies are investigated. The tradeoffs (such as time/space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single/multi Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty. It was found that with increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity and/or horizontal homogeneity. It was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.


2015 ◽  
Vol 8 (4) ◽  
pp. 1673-1684 ◽  
Author(s):  
G. E. Bodeker ◽  
S. Kremser

Abstract. The Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) provides reference quality RS92 radiosonde measurements of temperature, pressure and humidity. A key attribute of reference quality measurements, and hence GRUAN data, is that each datum has a well characterized and traceable estimate of the measurement uncertainty. The long-term homogeneity of the measurement records, and their well characterized uncertainties, make these data suitable for reliably detecting changes in global and regional climate on decadal time scales. Considerable effort is invested in GRUAN operations to (i) describe and analyse all sources of measurement uncertainty to the extent possible, (ii) quantify and synthesize the contribution of each source of uncertainty to the total measurement uncertainty, and (iii) verify that the evaluated net uncertainty is within the required target uncertainty. However, if the climate science community is not sufficiently well informed on how to capitalize on this added value, the significant investment in estimating meaningful measurement uncertainties is largely wasted. This paper presents and discusses the techniques that will need to be employed to reliably quantify long-term trends in GRUAN data records. A pedagogical approach is taken whereby numerical recipes for key parts of the trend analysis process are explored. The paper discusses the construction of linear least squares regression models for trend analysis, boot-strapping approaches to determine uncertainties in trends, dealing with the combined effects of autocorrelation in the data and measurement uncertainties in calculating the uncertainty on trends, best practice for determining seasonality in trends, how to deal with co-linear basis functions, and interpreting derived trends. Synthetic data sets are used to demonstrate these concepts which are then applied to a first analysis of temperature trends in RS92 radiosonde upper air soundings at the GRUAN site at Lindenberg, Germany (52.21° N, 14.12° E).


1998 ◽  
Vol 26 ◽  
pp. 179-183 ◽  
Author(s):  
Eric Martin ◽  
Yves Lejeune

Measurements of sensible- and latent-heat fluxes under stable conditions are rare. In order to obtain indirect measurements of turbulent fluxes, meteorological data measured at the Col de Porte laboratory (1320 m a.s.l, France) under very stable conditions (cold, clear night with low wind) are used. The radiative fluxes are measured, the conduction within the snowpack is calculated using the snow model Crocus and the turbulent fluxes are determined as a residual term of the surface-energy balance equation. These data were used to fit a new parameterization of the turbulent fluxes for the snow model. The turbulent fluxes are increased as compared to the theory. Crocus was also applied to the data from the LEADEX92 experiment and the turbulent fluxes calculated by the model were compared to the fluxes measured using sonic anemometers/thermometers on the site.


Author(s):  
Klaus Brun ◽  
Rainer Kurz

Field testing of gas turbine compressor packages requires the accurate determination of efficiency, capacity, head, power and fuel flow in sometimes less than ideal working environments. Nonetheless, field test results have significant implication for the compressor and gas turbine manufacturers and their customers. Economic considerations demand that the performance and efficiency of an installation are verified to assure a project’s return on investment. Thus, for the compressor and gas turbine manufacturers, as well as for the end-user, an accurate determination of the field performance is of vital interest. This paper describes an analytic method to predict the measurement uncertainty and, thus, the accuracy, of field test results for gas turbine driven compressors. Namely, a method is presented which can be employed to verify the validity of field test performance results. The equations governing the compressor and gas turbine performance uncertainties are rigorously derived and results are numerically compared to actual field test data. Typical field test measurement uncertainties are presented for different sets of instrumentation. Test parameters that correlate to the most significant influence on the performance uncertainties are identified and suggestions are provided on how to minimize their measurement errors. The effect of different equations of state on the calculated performance is also discussed. Results show that compressor efficiency uncertainties can be unacceptably high when some basic rules for accurate testing are violated. However, by following some simple measurement rules and maintaining commonality of the gas equations of state, the overall compressor package performance measurement uncertainty can be limited and meaningful results can be achieved.


2015 ◽  
Vol 8 (2) ◽  
pp. 1731-1785
Author(s):  
C. Mallaun ◽  
A. Giez ◽  
R. Baumann

Abstract. An innovative calibration method for the wind speed measurement using a boom mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high accuracy Inertial Reference System (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the 3-D wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s−1 for the horizontal and 0.2 m s−1 for the vertical wind components.


Author(s):  
Judith Ann Bamberger ◽  
Greg F. Piepel ◽  
Carl W. Enderlin ◽  
Brett G. Amidan ◽  
Alejandro Heredia-Langner

Understanding how uncertainty manifests itself in complex experiments is important for developing the testing protocol and interpreting the experimental results. This paper describes experimental and measurement uncertainties, and how they can depend on the order of performing experimental tests. Experiments with pulse-jet mixers in tanks at three scales were conducted to characterize the performance of transient-developing periodic flows in Newtonian slurries. Other test parameters included the simulant, solids concentration, and nozzle exit velocity. Critical suspension velocity and cloud height were the metrics used to characterize Newtonian slurry flow associated with mobilization and mixing. During testing, near-replicate and near-repeat tests were conducted. The experimental results were used to quantify the combined experimental and measurement uncertainties using standard deviations and percent relative standard deviations (%RSD) The uncertainties in critical suspension velocity and cloud height tend to increase with the values of these responses. Hence, the %RSD values are the more appropriate summary measure of near-replicate testing and measurement uncertainty.


Author(s):  
Giulia Dell’Era ◽  
Mehmet Mersinligil ◽  
Jean-François Brouckaert

With the advancements in miniaturization and temperature capabilities of piezo-resistive pressure sensors, pneumatic probes — which are the long established standard for flow-path pressure measurements in gas turbine environments — are being replaced with unsteady pressure probes. On the other hand, any measured quantity is by definition inherently different from the ‘true’ value, requiring the estimation of the associated errors for determining the validity of the results and establishing respective confidence intervals. In the context of pressure measurements, the calibration uncertainty values, which differ from measurement uncertainties, are typically provided. Even then, the lack of a standard methodology is evident as uncertainties are often reported without appropriate confidence intervals. Moreover, no time-resolved measurement uncertainty analysis has come to the attention of the authors. The objective of this paper is to present a standard method for the estimation of the uncertainties related to measurements performed using single sensor unsteady pressure probes, with the help of measurements obtained in a one and a half stage low pressure high speed axial compressor test rig as an example. The methodology presented is also valid for similar applications involving the use of steady or unsteady sensors and instruments. The static calibration uncertainty, steady measurement uncertainties and unsteady measurement uncertainties based on phase-locked and ensemble averages are presented by the authors in [1]. Depending on the number of points used for the averaging, different values for uncertainty have been observed, underlining the importance of having greater number of samples. For unsteady flows, higher uncertainties have been observed at regions of higher unsteadiness such as tip leakage vortices, hub corner vortices and blade wakes. Unfortunately, the state of the art in single-sensor miniature unsteady pressure probes is comparable to multi-hole pneumatic probes in size, preventing the use of multi-hole unsteady probes in turbomachinery environments. However, the angular calibration properties of a single sensor probe obtained via an aerodynamic calibration may further be exploited as if a three-hole directional probe is employed, yielding corrected total pressure, unsteady yaw angle, static pressure and Mach number distributions based on the phase-locked averages with the expense of losing the time-correlation between the virtual ports. The aerodynamic calibration and derivation process are presented together with the assessment of the uncertainties associated to these derived quantities in this contribution. In the virtual three-hole mode, similar to that of a single-sensor probe, higher uncertainty values are observed at regions of higher unsteadiness.


2020 ◽  
Author(s):  
Irene Himmelbauer ◽  
Daniel Aberer ◽  
Lukas Schremmer ◽  
Ivana Petrakovic ◽  
Luca Zappa ◽  
...  

<p><span>The International Soil Moisture Network (ISMN, </span><span></span><span>) is an international cooperation to establish and maintain an open-source global data hosting facility, providing in-situ soil moisture data as well as accompanying soil variables. This database is an essential means for validating and improving global satellite soil moisture products as well as land surface -, climate- , and hydrological models.</span></p><p><span>For hydrological validation, the quality of used in-situ data is essential. The various independent local and regional in situ networks often do not follow standardized measurement techniques or protocols, collect their data in different units, at different depths and at various sampling rates. Besides, quality control is rarely applied and accessing the data is often not easy or feasible.</span></p><p><span>The ISMN was created to address the above-mentioned issues. Within the ISMN, in situ soil moisture measurements (surface and sub-surface) are collected, harmonized in terms of units and sampling rates, advanced quality control is applied and the data is then stored in a database and made available online, where users can download it for free. </span></p><p><span>Since its establishment in 2009 and with continuous financial support through the European Space Agency (ESA), the ISMN evolved into a widely used in situ data source growing continuously (in terms of data volume and users). Historic measurements starting in 1952 up to near–real time are available through the ISMN web portal. Currently, the ISMN consists of 60 networks with more than 2500 stations spread all over the globe. With a </span><span><span>steadily growing user community more than 3200 registered users strong</span></span><span> the value of the ISMN as a well-established and rich source of in situ soil moisture observations is well recognized. In fact, the ISMN is widely used in variety of scientific fields (e.g. climate, water, agriculture, disasters, ecosystems, weather, biodiversity, etc.). </span></p><p> <span>Our partner networks range from networks with a handful of stations to networks that are composed of over 400 sites, are supported with half yearly provider reports on statistical data about their network (e.g.: data download statistic, flagging statistic, etc.). </span></p><p><span>About 10’000 datasets are available through the web portal. However, the spatial coverage of in situ observations still needs to be improved. For example, in Africa and South America only sparse data are available. Innovative ideas, such as the inclusion of soil moisture data from low cost sensors (GROW observatory ) collected by citizen scientists, holds the potential of closing this gap, thus providing new information and knowledge.</span></p><p><span>In this session , we want to give an overview of the ISMN, its unique features and its support of data provider, who are willing to openly share their data, as well as hydrological researcher in need of freely available datasets.</span></p>


2020 ◽  
Author(s):  
John Molson ◽  
Emil Frind

<p>Numerical simulations of mean groundwater age are presented for a variety of complex flow systems including heterogeneous aquifers and discretely-fractured porous rock. We apply the finite element models FLONET/TR2 (in the 2D vertical plane) and SALTFLOW (in 3D systems), using the standard advection-dispersion equation with an age source term. The age simulations are applied in a variety of contexts including defining capture zones for pumping wells, characterizing fractured rock aquifers, and for improved understanding of flow systems and geochemical evolution. Applications include real field sites and hypothetical conceptual models. Comparisons are also made with advective particle-tracking derived ages which are much faster to compute but do not include dispersive age mixing. Control of numerical (age) dispersion is critical, especially within discrete fracture networks where high age gradients can develop between the fractures and matrix. The presentation will highlight the broad applications of mean groundwater age simulations and will show how they can be useful for providing insight into hydrogeological systems.</p>


2014 ◽  
Vol 3 (4) ◽  
Author(s):  
Nektarios Koukourakis ◽  
Robert Kuschmierz ◽  
Michael Bohling ◽  
Jürgen Jahns ◽  
Andreas Fischer ◽  
...  

AbstractIn order to improve safety, lifetime and energy efficiency of turbo machines, the behavior of the turbine blades has to be monitored during operation. This is a great challenge for metrology, since small, robust and non-contact position measurement techniques are required that offer both micrometer accuracy and microsecond temporal resolution. The Laser-Doppler-Distance (LDD) -Sensor proved to be an adequate technique to perform such measurements. However, the usage in turbo machines requires a miniaturized and temperature-stable sensor-head. In this paper we introduce a miniaturized design of the LDD-sensor that is based on common-path detection. First results indicated that the numerical aperture of the common-path detection is small in comparison to former implementations that used separate paths for illumination and detection. We find that decreasing the numerical aperture strongly increases the systematic measurement uncertainty. For this purpose a novel diffractive optical element containing a diffracting-lens was designed and used to increase the numerical aperture of the common-path detection without affecting the sensor size. Experiments prove that the new element reduces the relative systematic measurement uncertainty by a factor of ten. The mean systematic position measurement uncertainty amounts to Δ


Sign in / Sign up

Export Citation Format

Share Document