scholarly journals Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

2018 ◽  
Vol 11 (5) ◽  
pp. 2837-2861 ◽  
Author(s):  
Natalya A. Kramarova ◽  
Pawan K. Bhartia ◽  
Glen Jaross ◽  
Leslie Moy ◽  
Philippe Xu ◽  
...  

Abstract. The Limb Profiler (LP) is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km) LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing vertical, spatial and temporal ozone distribution associated with natural processes, like the seasonal cycle and quasi-biennial oscillations. We found a small positive drift ∼ 0.5 % yr−1 in the LP ozone record against MLS and OSIRIS that is more pronounced at altitudes above 35 km. This pattern in the relative drift is consistent with a possible 100 m drift in the LP sensor pointing detected by one of our altitude-resolving methods.

2017 ◽  
Author(s):  
Natalya A. Kramarova ◽  
Pawan K. Bhartia ◽  
Glen Jaross ◽  
Leslie Moy ◽  
Philippe Xu ◽  
...  

Abstract. The Limb Profiler (LP) is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction, and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). We document observed biases, seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km) LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals has significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing vertical, spatial and temporal ozone distribution associated with natural processes, like the seasonal cycle and Quasi Biennial Oscillations. We found a small positive drift ~ 0.5 %/yr in the LP ozone record against MLS and OSIRIS that is more pronounced at altitudes above 35 km. This pattern in the relative drift is consistent with a possible 100-meter drift in the LP sensor pointing detected by one of our altitude resolving methods.


2012 ◽  
Vol 5 (12) ◽  
pp. 2993-3006 ◽  
Author(s):  
P. E. Sheese ◽  
K. Strong ◽  
E. J. Llewellyn ◽  
R. L. Gattinger ◽  
J. M. Russell ◽  
...  

Abstract. The Optical Spectrograph and InfraRed Imaging System (OSIRIS) on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.


2013 ◽  
Vol 6 (2) ◽  
pp. 3819-3857 ◽  
Author(s):  
C. Adams ◽  
A. E. Bourassa ◽  
V. Sofieva ◽  
L. Froidevaux ◽  
C. A. McLinden ◽  
...  

Abstract. The Optical Spectrograph and InfraRed Imaging System (OSIRIS) was launched aboard the Odin satellite in 2001 and is continuing to take limb-scattered sunlight measurements of the atmosphere. This work aims to characterize and assess the stability of the OSIRIS 11 yr v5.0x ozone data set. Three validation data sets were used: the v2.2 Microwave Limb Sounder (MLS) and v6 Global Ozone Monitoring of Occultation on Stars (GOMOS) satellite data records, and ozone sonde measurements. Global mean percent differences between coincident OSIRIS and validation measurements are within 5% of zero at all altitude layers above 18.5 km for MLS, above 21.5 km for GOMOS, and above 17.5 km for ozone sondes. Below 17.5 km, OSIRIS measurements agree with ozone sondes within 5% and are well-correlated (R > 0.75) with them. For low OSIRIS optics temperatures (< 16 °C), OSIRIS ozone measurements are biased low by up 6% compared with the validation data sets for 25.5–40.5 km. Biases between OSIRIS ascending and descending node measurements were investigated and were found to be related to aerosol retrievals below 27.5 km. Above 30 km, agreement between OSIRIS and the validation data sets was related to the OSIRIS retrieved albedo, which measures apparent upwelling, with a high bias for in OSIRIS data with large albedos. In order to assess the long-term stability of OSIRIS measurements, global average drifts relative to the validation data sets were calculated and were found to be < 3% per decade for comparisons against MLS for 19.5–36.5 km, GOMOS for 18.5–54.5 km, and ozone sondes for 12.5–22.5 km, and within error of 3% per decade at most altitudes. Above 36.5 km, the relative drift for OSIRIS versus MLS ranged from ~ 0–6%, depending on the data set used to convert MLS data to the OSIRIS altitude versus number density grid. Overall, this work demonstrates that the OSIRIS 11 yr ozone data set from 2001 to the present is suitable for trend studies.


2015 ◽  
Vol 8 (10) ◽  
pp. 10823-10873 ◽  
Author(s):  
K. S. Olsen ◽  
G. C. Toon ◽  
C. D. Boone ◽  
K. Strong

Abstract. Motivated by the initial selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars on the ExoMars Trace Gas Orbiter, we have been developing algorithms for retrieving volume mixing ratio vertical profiles of trace gases, the primary component of which is a new algorithm and software for retrieving vertical profiles of temperature and pressure from the spectra. In contrast to Earth-observing instruments, which can rely on accurate meteorological models, a priori information, and spacecraft position, Mars retrievals require a method with minimal reliance on such data. The temperature and pressure retrieval algorithms developed for this work were evaluated using Earth-observing spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple measurements during an occultation, separated in altitude by 1.5–5 km, and we analyze 10 CO2 vibration-rotation bands at each altitude, each with a different usable altitude range. We describe the algorithms and present results of their application and their comparison to the ACE-FTS data products. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) provides vertical profiles of temperature up to 40 km with high vertical resolution. Using six satellites and GPS radio occultation, COSMIC's data product has excellent temporal and spatial coverage, allowing us to find coincident measurements with ACE with very tight criteria: less than 1.5 h and 150 km. We present an inter-comparison of temperature profiles retrieved from ACE-FTS using our algorithm, that of the ACE Science Team (v3.5), and from COSMIC. When our retrievals are compared to ACE-FTS v3.5, we find mean differences between −5 and +2 K, and that our retrieved profiles have no seasonal or zonal biases, but do have a warm bias in the stratosphere and a cold bias in the mesosphere. When compared to COSMIC, we do not observe a warm/cool bias and mean differences are between −4 and +1 K. COSMIC comparisons are restricted to below 40 km, where our retrievals have the best agreement with ACE-FTS v3.5. When comparing ACE-FTS v3.5 to COSMIC we observe a cold bias in COSMIC of 0.5 K, and mean differences are between −0.9 and +0.6 K.


2014 ◽  
Vol 7 (1) ◽  
pp. 49-64 ◽  
Author(s):  
C. Adams ◽  
A. E. Bourassa ◽  
V. Sofieva ◽  
L. Froidevaux ◽  
C. A. McLinden ◽  
...  

Abstract. The Optical Spectrograph and InfraRed Imaging System (OSIRIS) was launched aboard the Odin satellite in 2001 and is continuing to take limb-scattered sunlight measurements of the atmosphere. This work aims to characterize and assess the stability of the OSIRIS 11 yr v5.0x ozone data set. Three validation data sets were used: the v2.2 Microwave Limb Sounder (MLS) and v6 Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite data records, and ozonesonde measurements. Global mean percent differences between coincident OSIRIS and validation measurements are within 5% at all altitudes above 18.5 km for MLS, above 21.5 km for GOMOS, and above 17.5 km for ozonesondes. Below 17.5 km, OSIRIS measurements agree with ozonesondes within 5% and are well-correlated (R > 0.75) with them. For low OSIRIS optics temperatures (< 16 °C), OSIRIS ozone measurements have a negative bias of 1–6% compared with the validation data sets for 25.5–40.5 km. Biases between OSIRIS ascending and descending node measurements were investigated and found to be related to aerosol retrievals below 27.5 km. Above 30 km, agreement between OSIRIS and the validation data sets was related to the OSIRIS retrieved albedo, which measures apparent upwelling, with a positive bias in OSIRIS data with large albedos. In order to assess the long-term stability of OSIRIS measurements, global average drifts relative to the validation data sets were calculated and were found to be < 3% per decade for comparisons with MLS for 19.5–36.5 km, GOMOS for 18.5–54.5 km, and ozonesondes for 12.5–22.5 km. Above 36.5 km, the relative drift for OSIRIS versus MLS ranged from ~ 0 to 6% per decade, depending on the data set used to convert MLS data to the OSIRIS altitude versus number density grid. Overall, this work demonstrates that the OSIRIS 11 yr ozone data set from 2001 to the present is suitable for trend studies.


2012 ◽  
Vol 516 ◽  
pp. 42-47
Author(s):  
Sun Choel Yang ◽  
Geon Hee Kim ◽  
Myung Sang Huh ◽  
Sang Yong Lee ◽  
Sang Hyuk Kim ◽  
...  

The Winston cone baffle was developed for the space observation camera of the MIRIS (Multi-purpose Infrared Imaging System) which is the main payload of STSAT-3 (Science and Technology Satellite). The Winston cone baffle reduces the orbital heat load to the STSAT-3 and is thermally connected to the radiator to cool down. The jig and ultra precision machining jig was designed using a 3D modelling program and analyzed using a computer aided engineering program (ANSYS). The reasons for designing the jig for the baffle were to enhance the stability of the machining and improve the form accuracy of the baffle. The strength, weight and barycentre of the jig are investigated to find the optimized ultra precision machining conditions. To maintain the weight balance of the baffle at high speed rotation, there are lots of holes that can be inserted by heavier bolts. Vibration of the natural diamond bite tool is reduced by using thin copper pipe and urethane silicone. Using this bite tool, we could decrease patterns on the surface of the Winston cone baffle. The results of the simulation using ANSYS show that maximum deformation of the baffle is less than the tolerance limit. Surface roughness of the fabricated Winston cone baffle is machined with the jig and the machining tool is under 5 nm. The Winston cone baffle is plated with gold after being electroless plated with nickel. This baffle is applied to the flight model of the MIRIS.


2010 ◽  
Vol 443 ◽  
pp. 394-399 ◽  
Author(s):  
Zhen Guo Zhang ◽  
Pei Qi Ge ◽  
Lei Zhang ◽  
Mao Cheng Tian

Based on the method of the statistical probability, the theory forecasting model of grinding force is modified analytically. The calculated force is used as an input factor to calculate the heat flux. Then the transient grinding temperature field is simulated using the finite element analysis (FEA). An infrared imaging system for a full area temperature measurement is used to validate the numerical model. Additionally, the experimental results are synthesized with the simulation results to analyze the temperature field and the hardness penetration depth (HPD). The distribution of the temperature field and the stability of the grind-hardening process are discussed, which could provide a reliable forecasting method for optimizing the grind process and controlling the hardening effects forwardly.


2015 ◽  
Vol 8 (1) ◽  
pp. 987-1011
Author(s):  
S. Tukiainen ◽  
E. Kyrölä ◽  
J. Tamminen ◽  
L. Blanot

Abstract. We have created a daytime ozone profile data set from the measurements of the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on board the Envisat satellite. This so-called GOMOS bright limb (GBL) data set contains ~ 358 000 stratospheric daytime ozone profiles measured by GOMOS in 2002–2012. The GBL data set complements the widely used GOMOS night-time data based on stellar occultation measurements. The GBL data set is based on the GOMOS daytime occultations but instead of the transmitted star light, we use limb scattered solar light. The ozone profiles retrieved from these radiance spectra cover 18–60 km tangent height range and have approximately 2–3 km vertical resolution. We show that these profiles are generally in better than 10% agreement with the NDACC (Network for the Detection of Atmospheric Composition Change) ozone sounding profiles and with the GOMOS night-time, MLS (Microwave Limb Sounder), and OSIRIS (Optical Spectrograph, and InfraRed Imaging System) satellite measurements. However, there is a 10–13% negative bias at 40 km tangent height and a 10–50% positive bias at 50 km when the solar zenith angle > 75°. These biases are most likely caused by stray light which is difficult to characterize and remove entirely from the measured spectra. Nevertheless, the GBL data set approximately doubles the amount of useful GOMOS ozone profiles and improves coverage of the summer pole.


2016 ◽  
Vol 9 (3) ◽  
pp. 1063-1082 ◽  
Author(s):  
Kevin S. Olsen ◽  
Geoffrey C. Toon ◽  
Chris D. Boone ◽  
Kimberly Strong

Abstract. Motivated by the initial selection of a high-resolution solar occultation Fourier transform spectrometer (FTS) to fly to Mars on the ExoMars Trace Gas Orbiter, we have been developing algorithms for retrieving volume mixing ratio vertical profiles of trace gases, the primary component of which is a new algorithm and software for retrieving vertical profiles of temperature and pressure from the spectra. In contrast to Earth-observing instruments, which can rely on accurate meteorological models, a priori information, and spacecraft position, Mars retrievals require a method with minimal reliance on such data. The temperature and pressure retrieval algorithms developed for this work were evaluated using Earth-observing spectra from the Atmospheric Chemistry Experiment (ACE) FTS, a solar occultation instrument in orbit since 2003, and the basis for the instrument selected for a Mars mission. ACE-FTS makes multiple measurements during an occultation, separated in altitude by 1.5–5 km, and we analyse 10 CO2 vibration–rotation bands at each altitude, each with a different usable altitude range. We describe the algorithms and present results of their application and their comparison to the ACE-FTS data products. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) provides vertical profiles of temperature up to 40 km with high vertical resolution. Using six satellites and GPS radio occultation, COSMIC's data product has excellent temporal and spatial coverage, allowing us to find coincident measurements with ACE with very tight criteria: less than 1.5 h and 150 km. We present an intercomparison of temperature profiles retrieved from ACE-FTS using our algorithm, that of the ACE Science Team (v3.5), and from COSMIC. When our retrievals are compared to ACE-FTS v3.5, we find mean differences between −5 and +2 K and that our retrieved profiles have no seasonal or zonal biases but do have a warm bias in the stratosphere and a cold bias in the mesosphere. When compared to COSMIC, we do not observe a warm/cool bias and mean differences are between −4 and +1 K. COSMIC comparisons are restricted to below 40 km, where our retrievals have the best agreement with ACE-FTS v3.5. When comparing ACE-FTS v3.5 to COSMIC we observe a cold bias in COSMIC of 0.5 K, and mean differences are between −0.9 and +0.6 K.


Sign in / Sign up

Export Citation Format

Share Document