scholarly journals Absorption instruments inter-comparison campaign at the Arctic Pallas station

2021 ◽  
Vol 14 (8) ◽  
pp. 5397-5413
Author(s):  
Eija Asmi ◽  
John Backman ◽  
Henri Servomaa ◽  
Aki Virkkula ◽  
Maria I. Gini ◽  
...  

Abstract. Aerosol light absorption was measured during a 1-month field campaign in June–July 2019 at the Pallas Global Atmospheric Watch (GAW) station in northern Finland. Very low aerosol concentrations prevailed during the campaign, which posed a challenge for the instruments' detection capabilities. The campaign provided a real-world test for different absorption measurement techniques supporting the goals of the European Metrology Programme for Innovation and Research (EMPIR) Black Carbon (BC) project in developing aerosol absorption standard and reference methods. In this study we compare the results from five filter-based absorption techniques – aethalometer models AE31 and AE33, a particle soot absorption photometer (PSAP), a multi-angle absorption photometer (MAAP), and a continuous soot monitoring system (COSMOS) – and from one indirect technique called extinction minus scattering (EMS). The ability of the filter-based techniques was shown to be adequate to measure aerosol light absorption coefficients down to around 0.01 Mm−1 levels when data were averaged to 1–2 h. The hourly averaged atmospheric absorption measured by the reference MAAP was 0.09 Mm−1 (at a wavelength of 637 nm). When data were averaged for >1 h, the filter-based methods agreed to around 40 %. COSMOS systematically measured the lowest absorption coefficient values, which was expected due to the sample pre-treatment in the COSMOS inlet. PSAP showed the best linear correlation with MAAP (slope=0.95, R2=0.78), followed by AE31 (slope=0.93). A scattering correction applied to PSAP data improved the data accuracy despite the added noise. However, at very high scattering values the correction led to an underestimation of the absorption. The AE31 data had the highest noise and the correlation with MAAP was the lowest (R2=0.65). Statistically the best linear correlations with MAAP were obtained for AE33 and COSMOS (R2 close to 1), but the biases at around the zero values led to slopes clearly below 1. The sample pre-treatment in the COSMOS instrument resulted in the lowest fitted slope. In contrast to the filter-based techniques, the indirect EMS method was not adequate to measure the low absorption values found at the Pallas site. The lowest absorption at which the EMS signal could be distinguished from the noise was >0.1 Mm−1 at 1–2 h averaging times. The mass absorption cross section (MAC) value measured at a range 0–0.3 Mm−1 was calculated using the MAAP and a single particle soot photometer (SP2), resulting in a MAC value of 16.0±5.7 m2 g−1. Overall, our results demonstrate the challenges encountered in the aerosol absorption measurements in pristine environments and provide some useful guidelines for instrument selection and measurement practices. We highlight the need for a calibrated transfer standard for better inter-comparability of the absorption results.

2020 ◽  
Author(s):  
Eija Asmi ◽  
John Backman ◽  
Henri Servomaa ◽  
Aki Virkkula ◽  
Maria Gini ◽  
...  

Abstract. The Arctic absorbing aerosols have a high potential to accelerate global warming. Accurate and sensitive measurements of their concentrations, variability and atmospheric mixing are needed. Filter-based aerosol light absorption measurement methods are the most widely applied in the Arctic. Those will be the focus of this study. Aerosol light absorption was measured during one month field campaign in June–July 2019 at the Pallas Global Atmospheric Watch (GAW) station in northern Finland. The campaign provided a real-world test for different absorption measurement techniques supporting the goals of the EMPIR BC metrology project in developing aerosol absorption standard and reference methods. Very low aerosol concentrations prevailed during the campaign which imposed a challenge for the instruments detection. In this study we compare the results from five filter-based absorption techniques: Aethalometer models AE31 and AE33, Particle Soot Absorption Photometer (PSAP), Multi Angle Absorption Photometer (MAAP) and Continuous Soot Monitoring System (COSMOS), and from one indirect method called Extinction Minus Scattering (EMS). The sensitivity of the filter-based techniques was adequate to measure aerosol light absorption coefficients down to around 0.05 Mm−1 levels. The average value measured during the campaign using MAAP was 0.09 Mm−1 (at wavelength of 637 nm). When data were averaged for > 1 h, an agreement of around 20 % was obtained between instruments. COSMOS measured systematically the lowest absorption coefficient values, which was expected due to the sample pre-treatment in COSMOS inlet. PSAP showed the best linear correlation with MAAP (R2 = 0.85), followed by AE33 and COSMOS (R2 = 0.84). The noisy data from AE31 resulted in a slightly lower, yet a significant, correlation with MAAP (R2 = 0.46). In contrast to the filter-based techniques, the sensitivity of the indirect EMS method to measure aerosol absorption was not adequate at such low concentrations levels. An absorption coefficient on the order of > 1 Mm−1 was estimated as the lowest limit, to reliably distinguish the signal from the noise. Throughout the campaign the aerosol was highly scattering with an average single-scattering albedo of 0.97. Two different air-mass origins could be identified: the north-east and from the north-west. The north-eastern air masses contained higher fraction of thickly coated light absorbing particles than the westerly air masses. Aerosol scattering, absorption and the particle coating thickness increased on the last ten days of the campaign during the north-eastern air flow. The simultaneous changes in aerosol source region, mixing state, concentration and particle optical size were reflected in the instruments' response in a complex way. The observed decrease in aerosol size suggested additional activation of secondary particle formation mechanisms. The results demonstrate the challenges encountered in the Arctic absorbing aerosol measurements. The applicability and uncertainties of different techniques are discussed and new knowledge on the absorbing aerosol characteristics in summer Arctic air masses reference to the source region is provided.


2018 ◽  
Vol 53 (2) ◽  
pp. 160-171 ◽  
Author(s):  
Ji-Hyoung Kim ◽  
Sang-Woo Kim ◽  
John A. Ogren ◽  
Patrick J. Sheridan ◽  
Soon-Chang Yoon ◽  
...  

Author(s):  
Istemi F. Ozkan ◽  
Daryl J. Bandstra ◽  
Chris M. J. Timms ◽  
Arthur T. Zielinski

The Arctic onshore environment contains regions of discontinuous permafrost, where pipes may be subject to displacement-controlled bending in addition to high hoop stresses due to the pressurized fluids being transported. Considering the displacement-controlled nature of the deformations, strain-based design methodologies have been developed for permafrost pipelines when they are subject to bending and tension, which limit the longitudinal compressive and tensile strains. The widely accepted methodology in the industry to obtain the compressive strain capacity of line pipes subject to bending is to conduct Finite Element Analysis, incorporating material and geometrical nonlinearity calibrated against benchmark full-scale tests (bend tests) [1,2]. During these tests, compressive strains can be measured by various methods. The seemingly obvious choice is to apply strain gauges along the compression face of the specimen with respect to bending (intrados). This method will provide reasonable results until the compressive strain pattern begins to vary due to the initiation of buckle formation, which typically occurs shortly after yield. In order to measure average compressive strain beyond yield and up to buckling, the method used by C-FER Technologies (C-FER) involves using rotation measurement devices (inclinometers) to calculate the strain change between the most compressive and tensile fibres of the specimen (intrados and extrados, respectively) with respect to the bending direction. This value is then subtracted from the tensile strain gauge readings as measured by the strain gauge(s) located on the extrados of the specimen. The average compressive strain values derived from the inclinometer and extrados strain gauge measurements are based on the assumption that the plane sections remain plane. Recently, five large diameter pipes were bend-tested at C-FER’s testing facility in Edmonton, Alberta. In addition to the compressive strain measurement method used by C-FER described above (C-FER method), a visual image correlation (VIC) camera system was used to survey the strain distribution on the compressive face of the specimens. This paper gives a brief description of the test setup and instrumentation of this test program. The VIC camera setup and measurement technique are described and the overall strain distribution on the bending intrados as measured by the VIC cameras is presented. Strain measured by the VIC system is compared with gauge measurements at local points as well as the average compressive strain behaviour of the specimens obtained through the C-FER method described above. The results show that the VIC system can be a candidate to replace the conventional measurement techniques employed for compressive strain limit testing in support of strain-based design of arctic pipelines.


2016 ◽  
Vol 5 (1) ◽  
pp. 163-179 ◽  
Author(s):  
Leena Leppänen ◽  
Anna Kontu ◽  
Henna-Reetta Hannula ◽  
Heidi Sjöblom ◽  
Jouni Pulliainen

Abstract. The manual snow survey program of the Arctic Research Centre of the Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (HS) and snow water equivalent (SWE). In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day snow pit measurements include observations of HS, SWE, temperature, density, stratigraphy, grain size, specific surface area (SSA) and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.


2016 ◽  
Author(s):  
John Backman ◽  
Lauren Schmeisser ◽  
Aki Virkkula ◽  
John A. Ogren ◽  
Eija Asmi ◽  
...  

Abstract. Several types of filter-based instruments are used to estimate aerosol light absorption coefficients.Two significant results are presented based on Aethalometer measurements at six Arctic station from 2012–2014. First, an alternative method of post-processing the Aethalometer data is presented which reduces measurement noise and lowers the detection limit of the instrument more effectively than boxcar averaging. The biggest benefit of this approach can be achieved if instrument drift is minimized. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise the instrument is kept constant. This approach results in a time series with a variable collection time (Δt), but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations (>2.1–6.7 Mm−1 as measured by the Aethalometers). At high aerosol concentrations, minimizing the detection limit of the instrument is less critical. Second, utilizing co-located reference methods of aerosol absorption, a multiple cattering enhancement factor (Cref) of 3.10 specific to low elevation Arctic stations is found. Cref is a fundamental part of most of the Aethalometer corrections available in literature, and this is the first time a Cref value has been obtained for the Arctic.


2019 ◽  
Vol 12 (6) ◽  
pp. 3417-3434 ◽  
Author(s):  
Nicholas W. Davies ◽  
Cathryn Fox ◽  
Kate Szpek ◽  
Michael I. Cotterell ◽  
Jonathan W. Taylor ◽  
...  

Abstract. Biases in absorption coefficients measured using a filter-based absorption photometer (Tricolor Absorption Photometer, or TAP) at wavelengths of 467, 528 and 652 nm are evaluated by comparing to measurements made using photoacoustic spectroscopy (PAS). We report comparisons for ambient sampling covering a range of aerosol types including urban, fresh biomass burning and aged biomass burning. Data are also used to evaluate the performance of three different TAP correction schemes. We found that photoacoustic and filter-based measurements were well correlated, but filter-based measurements generally overestimated absorption by up to 45 %. Biases varied with wavelength and depended on the correction scheme applied. Optimal agreement to PAS data was achieved by processing the filter-based measurements using the recently developed correction scheme of Müller et al. (2014), which consistently reduced biases to 0 %–18 % at all wavelengths. The biases were found to be a function of the ratio of organic aerosol mass to light-absorbing carbon mass, although applying the Müller et al. (2014) correction scheme to filter-based absorption measurements reduced the biases and the strength of this correlation significantly. Filter-based absorption measurement biases led to aerosol single-scattering albedos that were biased low by values in the range 0.00–0.07 and absorption Ångström exponents (AAEs) that were in error by ± (0.03–0.54). The discrepancy between the filter-based and PAS absorption measurements is lower than reported in some earlier studies and points to a strong dependence of filter-based measurement accuracy on aerosol source type.


2018 ◽  
Vol 18 (24) ◽  
pp. 17843-17861 ◽  
Author(s):  
Nivedita K. Kumar ◽  
Joel C. Corbin ◽  
Emily A. Bruns ◽  
Dario Massabó ◽  
Jay G. Slowik ◽  
...  

Abstract. We investigate the optical properties of light-absorbing organic carbon (brown carbon) from domestic wood combustion as a function of simulated atmospheric aging. At shorter wavelengths (370–470 nm), light absorption by brown carbon from primary organic aerosol (POA) and secondary organic aerosol (SOA) formed during aging was around 10 % and 20 %, respectively, of the total aerosol absorption (brown carbon plus black carbon). The mass absorption cross section (MAC) determined for black carbon (BC, 13.7 m2 g−1 at 370 nm, with geometric standard deviation GSD =1.1) was consistent with that recommended by Bond et al. (2006). The corresponding MAC of POA (5.5 m2 g−1; GSD =1.2) was higher than that of SOA (2.4 m2 g−1; GSD =1.3) at 370 nm. However, SOA presents a substantial mass fraction, with a measured average SOA ∕ POA mass ratio after aging of ∼5 and therefore contributes significantly to the overall light absorption, highlighting the importance of wood-combustion SOA as a source of atmospheric brown carbon. The wavelength dependence of POA and SOA light absorption between 370 and 660 nm is well described with absorption Ångström exponents of 4.6 and 5.6, respectively. UV-visible absorbance measurements of water and methanol-extracted OA were also performed, showing that the majority of the light-absorbing OA is water insoluble even after aging.


Sign in / Sign up

Export Citation Format

Share Document