scholarly journals Effects of different correction algorithms on absorption coefficient – a comparison of three optical absorption photometers at a boreal forest site

2021 ◽  
Vol 14 (10) ◽  
pp. 6419-6441
Author(s):  
Krista Luoma ◽  
Aki Virkkula ◽  
Pasi Aalto ◽  
Katrianne Lehtipalo ◽  
Tuukka Petäjä ◽  
...  

Abstract. We present a comparison between three absorption photometers that measured the absorption coefficient (σabs) of ambient aerosol particles in 2012–2017 at SMEAR II (Station for Measuring Ecosystem–Atmosphere Relations II), a measurement station located in a boreal forest in southern Finland. The comparison included an Aethalometer (AE31), a multi-angle absorption photometer (MAAP), and a particle soot absorption photometer (PSAP). These optical instruments measured particles collected on a filter, which is a source of systematic errors, since in addition to the particles, the filter fibers also interact with light. To overcome this problem, several algorithms have been suggested to correct the AE31 and PSAP measurements. The aim of this study was to research how the different correction algorithms affected the derived optical properties. We applied the different correction algorithms to the AE31 and PSAP data and compared the results against the reference measurements conducted by the MAAP. The comparison between the MAAP and AE31 resulted in a multiple-scattering correction factor (Cref) that is used in AE31 correction algorithms to compensate for the light scattering by filter fibers. Cref varies between different environments, and our results are applicable to a boreal environment. We observed a clear seasonal cycle in Cref, which was probably due to variations in aerosol optical properties, such as the backscatter fraction and single-scattering albedo, and also due to variations in the relative humidity (RH). The results showed that the filter-based absorption photometers seemed to be rather sensitive to the RH even if the RH was kept below the recommended value of 40 %. The instruments correlated well (R≈0.98), but the slopes of the regression lines varied between the instruments and correction algorithms: compared to the MAAP, the AE31 underestimated σabs only slightly (the slopes varied between 0.96–1.00) and the PSAP overestimated σabs only a little (the slopes varied between 1.01–1.04 for a recommended filter transmittance >0.7). The instruments and correction algorithms had a notable influence on the absorption Ångström exponent: the median absorption Ångström exponent varied between 0.93–1.54 for the different algorithms and instruments.

2020 ◽  
Author(s):  
Krista Luoma ◽  
Aki Virkkula ◽  
Pasi Aalto ◽  
Katrianne Lehtipalo ◽  
Tuukka Petäjä ◽  
...  

Abstract. We present a comparison of three absorption photometers that measured the absorption coefficient (σabs) of ambient aerosol particles in 2012–2017 at SMEAR II, a measurement station located in a boreal forest in southern Finland. The comparison included an Aethalometer (AE31), a Multi Angle Absorption Photometer (MAAP), and a Particle Soot Absorption Photometer (PSAP). These optical instruments measured particles collected on a filter, which is a source for systematic errors, since in addition to the particles, also the filter fibers interact with the radiation. To overcome this problem, several algorithms have been suggested to correct the data measured by the AE31 and the PSAP. Our aim is to study how the different correction algorithms affected the derived optical properties. We applied different correction algorithms to the AE31 and PSAP data, and compared the results against the reference measurements conducted by the MAAP. The comparison between the MAAP and AE31 resulted to a multiple scattering correction factor (Cref) used in the AE31 correction algorithms to compensate for the scattering by the filter fibers. The Cref varies between different environments, and our results are applicable for measurements conducted in a boreal environment. We observed a clear seasonal cycle of Cref, which was probably due to the variations in aerosol optical properties, such as the backscatter fraction and single-scattering albedo, and also due to the variations in the relative humidity (RH) even though the RH in the instruments were kept below 40 %. The results showed that the filter measurement methods seemed to be rather sensitive to the RH even if the RH was below the recommended value of 40 %. The instruments correlated well (R ≈ 0.98) but the slopes of the regression lines varied between the instruments and correction algorithms: compared to MAAP, the AE31 underestimated the σabs (the slopes varied between 0.93–0.97) and the PSAP overestimated the σabs (the slopes varied between 1.07–1.24). The instruments and correction algorithms had a notable influence on the absorption Ångström exponent: the median absorption Ångström exponent varied between 0.93–1.54 for the different algorithms and instruments.


2014 ◽  
Vol 14 (10) ◽  
pp. 14351-14397 ◽  
Author(s):  
J. Li ◽  
B. E. Carlson ◽  
O. Dubovik ◽  
A. A. Lacis

Abstract. The Aerosol Robotic Network (AERONET) has been providing high-quality retrievals of aerosol optical properties from the surface at worldwide locations for more than a decade. Many sites have continuous and consistent records for more than 10 years, which enables the investigation of long-term trends of aerosol properties at these locations. In this study, we present trend analysis of AERONET data at 63 selected locations. In addition to commonly studied parameters such as Aerosol Optical Depth (AOD) and Ångström Exponent (AE), we also focus on Absorption Aerosol Optical Depth (ABS), Scattering Optical Depth (SCT), Single Scattering Albedo (SSA) and the Absorption Ångström Exponent (AAE). Two statistical methods are used to detect and estimate the trend: Mann–Kendall test associated with Sen's slope and linear least square fitting. Their results agree well in terms of the significance of the trend for the majority of the cases. The results indicate that Europe and North America experienced a uniform decrease in AOD and SCT, while significant (> 90%) increases of these two parameters are found for Kanpur, India. Most of European and North American sites also show negative trends for ABS, as well as three East Asian stations. The reduction in ABS results in positive SSA trends for these locations. The increase of SCT also leads to a positive SSA trend for Kanpur. Negative SSA trends are mostly found over South America, Australia and a few West European stations, which are mainly attributed to the increase of absorption. Fewer stations are found with significant trends for AE and AAE. In general, the trends do not exhibit obvious seasonality for the majority of the parameters and stations.


2008 ◽  
Vol 8 (2) ◽  
pp. 6845-6901 ◽  
Author(s):  
R. M. Garland ◽  
H. Yang ◽  
O. Schmid ◽  
D. Rose ◽  
A. Nowak ◽  
...  

Abstract. The scattering and absorption of solar radiation by atmospheric aerosols is a key element of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however, highly variable and not well characterized, especially near newly emerging mega-cities. In this study, aerosol optical properties were measured at a regional background site approximately 60 km northwest of the mega-city Guangzhou in southeast China. The measurements were part of the "Program of Regional Integrated Experiments of Air Quality over the Pearl River Delta" intensive campaign (PRIDE-PRD2006), covering the period of 1–30 July 2006. Scattering and absorption coefficients of dry aerosol particles with diameters up to 10 μm (PM10) were determined with a three-wavelength integrating nephelometer and with a photoacoustic spectrometer, respectively. Averaged over the measurement campaign (arithmetic mean ±standard deviation), the total scattering coefficients were 200±133 Mm−1 (450 nm), 151±103 Mm−1 (550 nm) and 104±72 Mm−1 (700 nm) and the absorption coefficient was 34.3±26.5 Mm−1 (532 nm). The average Ångström exponent was 1.46±0.21 (450 nm/700 nm) and the average single scattering albedo was 0.82±0.07 (532 nm) with minimum values as low as 0.5. The low single scattering albedo values indicate a high abundance of, as well as strong sources of light absorbing carbon (LAC). The ratio of LAC to CO concentration was highly variable throughout the campaign, indicating a complex mix of different combustion sources. The scattering and absorption coefficients, as well as the Ångström exponent and single scattering albedo, exhibited pronounced diurnal cycles, which can be attributed to boundary layer mixing effects and enhanced nighttime emissions of LAC (diesel soot from regulated truck traffic). The daytime average single scattering albedo of 0.87 appears to be more suitable for climate modeling purposes than the 24-h average of 0.82, as the latter value is strongly influenced by fresh emissions into a shallow nocturnal boundary layer. In spite of high photochemical activity during daytime, we found no evidence for strong local production of secondary aerosol mass. The relatively low average mass scattering efficiency with respect to PM10 (2.84±0.037 m2 g−1, λ=550 nm) indicates a high proportion of mass in the coarse particle fraction (diameter >1 μm). During high pollution episodes, however, the Ångström exponent exhibited a dependence on wavelength, which indicates an enhancement of the fine particle fraction during these periods. A negative correlation between single scattering albedo and backscatter fraction was observed and found to affect the impact that these parameters have on aerosol radiative forcing efficiency.


2008 ◽  
Vol 8 (17) ◽  
pp. 5161-5186 ◽  
Author(s):  
R. M. Garland ◽  
H. Yang ◽  
O. Schmid ◽  
D. Rose ◽  
A. Nowak ◽  
...  

Abstract. The scattering and absorption of solar radiation by atmospheric aerosols is a key element of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however, highly variable and not well characterized, especially near newly emerging mega-cities. In this study, aerosol optical properties were measured at a rural site approximately 60 km northwest of the mega-city Guangzhou in southeast China. The measurements were part of the PRIDE-PRD2006 intensive campaign, covering the period of 1–30 July 2006. Scattering and absorption coefficients of dry aerosol particles with diameters up to 10 μm (PM10) were determined with a three-wavelength integrating nephelometer and with a photoacoustic spectrometer, respectively. Averaged over the measurement campaign (arithmetic mean ± standard deviation), the total scattering coefficients were 200±133 Mm−1 (450 nm), 151±103 Mm−1 (550 nm) and 104±72 Mm−1 (700 nm) and the absorption coefficient was 34.3±26.5 Mm−1 (532 nm). The average Ångström exponent was 1.46±0.21 (450 nm/700 nm) and the average single scattering albedo was 0.82±0.07 (532 nm) with minimum values as low as 0.5. The low single scattering albedo values indicate a high abundance, as well as strong sources, of light absorbing carbon (LAC). The ratio of LAC to CO concentration was highly variable throughout the campaign, indicating a complex mix of different combustion sources. The scattering and absorption coefficients, as well as the Ångström exponent and single scattering albedo, exhibited pronounced diurnal cycles, which can be attributed to boundary layer mixing effects and enhanced nighttime emissions of LAC (diesel soot from regulated truck traffic). The daytime average mid-visible single scattering albedo of 0.87 appears to be more suitable for climate modeling purposes than the 24-h average of 0.82, as the latter value is strongly influenced by fresh emissions into a shallow nocturnal boundary layer. In spite of high photochemical activity during daytime, we found no evidence for strong local production of secondary aerosol mass. The average mass scattering efficiencies with respect to PM10 and PM1 concentrations derived from particle size distribution measurements were 2.8 m2 g−1 and 4.1 m2 g−1, respectively. The Ångström exponent exhibited a wavelength dependence (curvature) that was related to the ratio of fine and coarse particle mass (PM1/PM10) as well as the surface mode diameter of the fine particle fraction. The results demonstrate consistency between in situ measurements and a remote sensing formalism with regard to the fine particle fraction and volume mode diameter, but there are also systematic deviations for the larger mode diameters. Thus we suggest that more data sets from in situ measurements of aerosol optical parameters and particle size distributions should be used to evaluate formalisms applied in aerosol remote sensing. Moreover, we observed a negative correlation between single scattering albedo and backscatter fraction, and we found that it affects the impact that these parameters have on aerosol radiative forcing efficiency and should be considered in model studies of the PRD and similarly polluted mega-city regions.


2018 ◽  
Author(s):  
Lauren Schmeisser ◽  
John Backman ◽  
John A. Ogren ◽  
Elisabeth Andrews ◽  
Eija Asmi ◽  
...  

Abstract. Given the sensitivity of the Arctic climate to short-lived climate forcers, long-term in-situ surface measurements of aerosol parameters are useful in gaining insight into the magnitude and variability of these climate forcings. Seasonality of aerosol optical properties, including aerosol light scattering coefficient, absorption coefficient, single scattering albedo, scattering Ångström exponent, and asymmetry parameter are presented for six monitoring sites throughout the Arctic: Alert, Canada; Barrow, USA; Pallas, Finland; Summit, Greenland; Tiksi, Russia; and Zeppelin Mountain, Ny-Ålesund, Svalbard, Norway. Results show annual variability in all parameters, though the seasonality of each aerosol optical property varies from site to site. There is a large diversity in magnitude and variability of scattering coefficient at all sites, reflecting differences in aerosol source, transport and removal at different locations throughout the Arctic. Of the Arctic sites, the highest annual mean scattering coefficient is measured at Tiksi (12.47 Mm−1) and the lowest annual mean scattering coefficient is measured at Summit (1.74 Mm−1). At most sites, aerosol absorption peaks in the winter and spring, and has a minimum throughout the Arctic in the summer, indicative of the Arctic haze phenomenon; however, nuanced variations in seasonalities suggest that this phenomenon is not identically observed in all regions of the Arctic. The highest annual mean absorption coefficient is measured at Pallas (0.48 Mm−1) and Summit has the lowest annual mean absorption coefficient (0.12 Mm−1). At the Arctic monitoring stations analyzed here, mean annual single scattering albedo ranges from 0.909–0.960 (at Pallas and Barrow, respectively), mean annual scattering Ångström exponent ranges from 1.04–1.80 (at Barrow and Summit, respectively), and mean asymmetry parameter ranges from 0.57–0.75 (at Alert and Summit, respectively). Systematic variability of aerosol optical properties in the Arctic supports the notion that the sites presented here measure a variety of aerosol populations, which also experience different removal mechanisms. A robust conclusion from the climatologies presented is that the Arctic cannot be treated as one common and uniform environment, but rather is a region with ample spatio-temporal variability in aerosols. This notion is important in considering the design or aerosol monitoring networks in the region, and is important for informing climate models to better represent short-lived aerosol climate forcers in order to yield more accurate climate predictions for the Arctic.


2013 ◽  
Vol 6 (10) ◽  
pp. 2659-2669 ◽  
Author(s):  
A. Bayat ◽  
H. R. Khalesifard ◽  
A. Masoumi

Abstract. The polarized phase function of atmospheric aerosols has been investigated for the atmosphere of Zanjan, a city in northwest Iran. To do this, aerosol optical depth, Ångström exponent, single-scattering albedo, and polarized phase function have been retrieved from the measurements of a Cimel CE 318-2 polarized sun-photometer from February 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e., 60°) are strongly correlated (R = 0.95 and 0.95, respectively) with the Ångström exponent. The latter has a meaningful variation with respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R = −0.76 and −0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region – a populated city in the semi-arid area and surrounded by some dust sources of the Earth's dust belt.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1469
Author(s):  
Alba López-Caravaca ◽  
Ramón Castañer ◽  
Alvaro Clemente ◽  
Eduardo Yubero ◽  
Nuria Galindo ◽  
...  

The influence of three Saharan dust events (SDE) on particulate matter (PM) concentrations and aerosol optical properties (AOP) during February 2021 was studied. The physical characteristics of the African aerosol were different for each episode. Therefore, the impacts of the three events on PM and AOP were analyzed separately. The monitoring sites were placed in Elche, in the southeast of the Iberian Peninsula. The sites can be classified as urban background locations. The procedure used to obtain the contribution of SDE to PM10 mass concentrations was the 40th percentile method. Nearly half of the days during the study period were under the influence of Saharan air masses. The average contribution of mineral dust (MD) to the PM10 mean concentration was ~50%, which was the highest contribution during the month of February in the last 14 years. The results show that those events characterized by a high input of fine particles (PM1 and PM2.5) caused larger increases in the absorption (σap) and scattering (σsp) coefficients than SDE in which coarse particles predominated. Nevertheless, as expected, SAE (Scattering Angström Exponent) values were lowest during these episodes. AAE (Absorption Angström Exponent) values during SDE were slightly higher than those observed in the absence of African dust, suggesting some contribution from MD to the absorption process.


2005 ◽  
Vol 5 (6) ◽  
pp. 11703-11728 ◽  
Author(s):  
V. Aaltonen ◽  
H. Lihavainen ◽  
V.-M. Kerminen ◽  
M. Komppula ◽  
J. Hatakka ◽  
...  

Abstract. Three years of continuous measurements of aerosol optical properties and simultaneous aerosol number size distribution measurements at Pallas GAW station, a remote subarctic site in the northern border of the boreal forest zone, have been analysed. The scattering coefficient at 550 nm varied from 0.2 to 94.4 Mm−1 with an average of 7.1±8.6 Mm−1. Both the scattering and backscattering coefficients had a clear seasonal cycle with an autumn minimum and a 4–5 times higher summer maximum. The scattering was dominated by submicron aerosols and especially so during late summer and autumn. The Ångström exponent had a clear seasonal pattern with maximum values in late summer and minimum values during wintertime. The highest hemispheric backscattering fraction values were observed in autumn, indicating clean air with few scattering particles and a particle size distribution strongly dominated by ultrafine particles. To analyse the influence of air mass origin on the aerosol optical properties a trajectory climatology was applied to the Pallas aerosol data. The most polluted trajectory patterns represented air masses from the Kola Peninsula, Scandinavia and Russia as well as long-range transport from Britain and Eastern Europe. These air masses had the largest average scattering and backscattering coefficients for all seasons. Higher than average values of the Ångström exponent were also observed in connection with transport from these areas.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1103
Author(s):  
Jie Luo ◽  
Yongming Zhang ◽  
Qixing Zhang

In this work, the absorption Ångström exponent (AAE), extinction Ångström exponent (EAE), and single-scattering albedo (SSA) of black carbon (BC) with different coating materials are numerically investigated. BC with different coating materials can provide explanations for the small AAE, small EAE, and large AAE observed in the atmosphere, which is difficult to be explained by bare BC aggregate models. The addition of organic carbon (OC) does not necessarily increase AAE due to the transformation of BC morphologies and the existence of non-absorbing OC. The addition of coating materials does also not necessarily decrease EAE. While the addition of coating materials can increase the total size of BC-containing particles, the effective refractive index can be modified by introducing the coating materials, so increases the EAE. We found that it is not possible to differentiate between thinly- and heavily-coated BC based on EAE or AAE alone. On the other hand, SSA is much less sensitive to the size and can provide much more information for distinguishing heavily-coated BC from thinly-coated BC. For BC with different coating materials and mixing states, AAE, EAE, and SSA show rather different sensitivities to particle size and composition ratios, and their spectral-dependences also exhibit distinct differences. Different AAE and EAE trends with BC/OC ratio were also found for BC with different coating materials and mixing states. Furthermore, we also found empirical fittings for AAE, EAE, SSA, and optical cross-sections, which may be useful for retrieving the size information based on the optical measurements.


2019 ◽  
Vol 19 (24) ◽  
pp. 15483-15502 ◽  
Author(s):  
Yicheng Shen ◽  
Aki Virkkula ◽  
Aijun Ding ◽  
Krista Luoma ◽  
Helmi Keskinen ◽  
...  

Abstract. The concentration of cloud condensation nuclei (CCN) is an essential parameter affecting aerosol–cloud interactions within warm clouds. Long-term CCN number concentration (NCCN) data are scarce; there are a lot more data on aerosol optical properties (AOPs). It is therefore valuable to derive parameterizations for estimating NCCN from AOP measurements. Such parameterizations have already been made, and in the present work a new parameterization is presented. The relationships between NCCN, AOPs, and size distributions were investigated based on in situ measurement data from six stations in very different environments around the world. The relationships were used for deriving a parameterization that depends on the scattering Ångström exponent (SAE), backscatter fraction (BSF), and total scattering coefficient (σsp) of PM10 particles. The analysis first showed that the dependence of NCCN on supersaturation (SS) can be described by a logarithmic fit in the range SS <1.1 %, without any theoretical reasoning. The relationship between NCCN and AOPs was parameterized as NCCN≈((286±46)SAE ln(SS/(0.093±0.006))(BSF − BSFmin) + (5.2±3.3))σsp, where BSFmin is the minimum BSF, in practice the 1st percentile of BSF data at a site to be analyzed. At the lowest supersaturations of each site (SS ≈0.1 %), the average bias, defined as the ratio of the AOP-derived and measured NCCN, varied from ∼0.7 to ∼1.9 at most sites except at a Himalayan site where the bias was >4. At SS >0.4 % the average bias ranged from ∼0.7 to ∼1.3 at most sites. For the marine-aerosol-dominated site Ascension Island the bias was higher, ∼1.4–1.9. In other words, at SS >0.4 % NCCN was estimated with an average uncertainty of approximately 30 % by using nephelometer data. The biases were mainly due to the biases in the parameterization related to the scattering Ångström exponent (SAE). The squared correlation coefficients between the AOP-derived and measured NCCN varied from ∼0.5 to ∼0.8. To study the physical explanation of the relationships between NCCN and AOPs, lognormal unimodal particle size distributions were generated and NCCN and AOPs were calculated. The simulation showed that the relationships of NCCN and AOPs are affected by the geometric mean diameter and width of the size distribution and the activation diameter. The relationships of NCCN and AOPs were similar to those of the observed ones.


Sign in / Sign up

Export Citation Format

Share Document