scholarly journals Seasonal distribution of aerosol properties over Europe and their impact on UV irradiance

2009 ◽  
Vol 2 (2) ◽  
pp. 593-608 ◽  
Author(s):  
N. Y. Chubarova

Abstract. Using the aerosol optical thickness at 550 nm (τ550) from MODIS (collection 5) for the 2000–2008 period combined with the aerosol products from the ground-based AERONET network since 1996, monthly mean values of key aerosol parameters have been obtained with 1 degree resolution over Europe. Additional tests have revealed a satisfactory quality of the MODIS data, except in a few cases. Quality assured AERONET data are used for evaluating the Angstrom exponent, single scattering albedo and asymmetry factor, and for validating the final aerosol optical thickness in the UV spectral region. A method for extrapolating the aerosol parameters into the UV spectral region is discussed. The aerosol optical thickness distributions are considered together with meteorological fields from NOAA_NCEP_CPC_CAMS_ OPI climatology. The τ340 is shown to vary significantly from approximately 0.01 to 0.9 depending on the season and location. Permanent elevated aerosol loading over several industrial areas is observed, which agrees with the output of chemical transport models. Using radiative transfer modeling, monthly mean UV loss due to aerosol was estimated. The absolute decrease in UV indices varies from less than 0.1 to 1.5. The relative UV attenuation has large spatial and temporal variations (−1%–−17%) with a minimum towards the northwest and maxima over several southern local areas (Northern Italy, etc.) during the warm period.

2009 ◽  
Vol 2 (4) ◽  
pp. 1863-1899
Author(s):  
N. Y. Chubarova

Abstract. Using the aerosol optical thickness at 550 nm (τ550) from MODIS (collection 5) combined with the aerosol products from the ground-based AERONET network, key aerosol parameters have been obtained with 1 degree resolution over Europe. Additional tests have revealed a satisfactory quality of the MODIS data, except in a few cases. Quality assured AERONET data are used for evaluating the Angstrom exponent, single scattering albedo and asymmetry factor, and for validating the final aerosol optical thickness in the UV spectral region. A method for extrapolating the aerosol parameters into the UV spectral region is discussed. The aerosol optical thickness distributions are considered together with meteorological fields from NOAA_NCEP_CPC_CAMS_OPI climatology. The τ340 is shown to vary significantly from approximately 0.01 to 0.9 depending on the season and location. Permanent elevated aerosol loading over several industrial areas is observed, which agrees with the output of chemical transport models. Using radiative transfer modeling, monthly mean UV loss due to aerosol was estimated. The absolute decrease in UV indices varies from less than 0.1 to 1.5. The relative UV attenuation has large spatial and temporal variations (from −1% to −17%) with a minimum towards the northwest and maxima over several southern local areas (Northern Italy, etc.) during the warm period.


2021 ◽  
Author(s):  
Marta Luffarelli ◽  
Yves Govaerts

<p>The CISAR (Combined Inversion of Surface and AeRosols) algorithm is exploited in the framework of the ESA Aerosol Climate Change Initiatiave (CCI) project, aiming at providing a set of atmospheric (cloud and aerosol) and surface reflectance products derived from S3A/SLSTR observations using the same radiative transfer physics and assumptions. CISAR is an advance algorithm developed by Rayference originally designed for the retrieval of aerosol single scattering properties and surface reflectance from both geostationary and polar orbiting satellite observations.  It is based on the inversion of a fast radiative transfer model (FASTRE). The retrieval mechanism allows a continuous variation of the aerosol and cloud single scattering properties in the solution space.</p><p> </p><p>Traditionally, different approaches are exploited to retrieve the different Earth system components, which could lead to inconsistent data sets. The simultaneous retrieval of different atmospheric and surface variables over any type of surface (including bright surfaces and water bodies) with the same forward model and inversion scheme ensures the consistency among the retrieved Earth system components. Additionally, pixels located in the transition zone between pure clouds and pure aerosols are often discarded from both cloud and aerosol algorithms. This “twilight zone” can cover up to 30% of the globe. A consistent retrieval of both cloud and aerosol single scattering properties with the same algorithm could help filling this gap.</p><p> </p><p>The CISAR algorithm aims at overcoming the need of an external cloud mask, discriminating internally between aerosol and cloud properties. This approach helps reducing the overestimation of aerosol optical thickness in cloud contaminated pixels. The surface reflectance product is delivered both for cloud-free and cloudy observations.  </p><p> </p><p>Global maps obtained from the processing of S3A/SLSTR observations will be shown. The SLSTR/CISAR products over events such as, for instance, the Australian fire in the last months of 2019, will be discussed in terms of aerosol optical thickness, aerosol-cloud discrimination and fine/coarse mode fraction.</p>


2013 ◽  
Vol 6 (6) ◽  
pp. 10117-10163 ◽  
Author(s):  
P. R. Colarco ◽  
R. A. Kahn ◽  
L. A. Remer ◽  
R. C. Levy

Abstract. We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Ten different sampling strategies are employed, in which the full MODIS dataset is sub-sampled with various narrow-swath (~400–800 km) and curtain-like (~10 km) along-track configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, the AOT statistics of these sub-samples exhibit significant regional and seasonal biases. These AOT spatial sampling artifacts comprise up to 60% of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swaths exhibit a reduced ability to detect AOT trends with statistical significance, and for curtain-like sampling we do not find any statistically significant decadal-scale trends at all. An across-track sampling strategy obviates the MODIS view angle artifact, and its mean AOT converges to the full-swath mean values for sufficiently coarse spatial and temporal aggregation. Nevertheless, across-track sampling has significant seasonal-regional sampling artifacts, leading to biases comparable to the curtain-like along-track sampling, lacks sufficient coverage to assign statistical significance to aerosol trends, and is not achievable with an actual narrow-swath or curtain-like instrument. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to determine decadal-scale trends or to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.


2014 ◽  
Vol 7 (12) ◽  
pp. 4341-4351 ◽  
Author(s):  
G. van Harten ◽  
J. de Boer ◽  
J. H. H. Rietjens ◽  
A. Di Noia ◽  
F. Snik ◽  
...  

Abstract. Characterization of atmospheric aerosols is important for understanding their impact on health and climate. A wealth of aerosol parameters can be retrieved from multi-angle, multi-wavelength radiance and polarization measurements of the clear sky. We developed a ground-based SPEX instrument (groundSPEX) for accurate spectropolarimetry, based on the passive, robust, athermal, and snapshot spectral polarization modulation technique, and is hence ideal for field deployment. It samples the scattering phase function in the principal plane in an automated fashion, using a motorized pan/tilt unit and automatic exposure time detection. Extensive radiometric and polarimetric calibrations were performed, yielding values for both random noise and systematic uncertainties. The absolute polarimetric accuracy at low degrees of polarization is established to be ~5 × 10−3. About 70 measurement sequences have been performed throughout four clear-sky days at Cabauw, the Netherlands. Several aerosol parameters were retrieved: aerosol optical thickness, effective radius, and complex refractive index for fine and coarse mode. The results are in good agreement with the colocated AERONET products, with a correlation coefficient of ρ = 0.932 for the total aerosol optical thickness at 550 nm.


2016 ◽  
Vol 16 (18) ◽  
pp. 12287-12303 ◽  
Author(s):  
Husi Letu ◽  
Hiroshi Ishimoto ◽  
Jerome Riedi ◽  
Takashi Y. Nakajima ◽  
Laurent C.-Labonnote ◽  
...  

Abstract. In this study, various ice particle habits are investigated in conjunction with inferring the optical properties of ice clouds for use in the Global Change Observation Mission-Climate (GCOM-C) satellite programme. We develop a database of the single-scattering properties of five ice habit models: plates, columns, droxtals, bullet rosettes, and Voronoi. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor on board the GCOM-C satellite, which is scheduled to be launched in 2017 by the Japan Aerospace Exploration Agency. A combination of the finite-difference time-domain method, the geometric optics integral equation technique, and the geometric optics method is applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible to the infrared spectral regions. This covers the SGLI channels for the size parameter, which is defined as a single-particle radius of an equivalent volume sphere, ranging between 6 and 9000 µm. The database includes the extinction efficiency, absorption efficiency, average geometrical cross section, single-scattering albedo, asymmetry factor, size parameter of a volume-equivalent sphere, maximum distance from the centre of mass, particle volume, and six nonzero elements of the scattering phase matrix. The characteristics of calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, size-integrated bulk scattering properties for the five ice particle habit models are calculated from the single-scattering database and microphysical data. Using the five ice particle habit models, the optical thickness and spherical albedo of ice clouds are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements, recorded on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite. The optimal ice particle habit for retrieving the SGLI ice cloud properties is investigated by adopting the spherical albedo difference (SAD) method. It is found that the SAD is distributed stably due to the scattering angle increases for bullet rosettes with an effective diameter (Deff) of 10 µm and Voronoi particles with Deff values of 10, 60, and 100 µm. It is confirmed that the SAD of small bullet-rosette particles and all sizes of Voronoi particles has a low angular dependence, indicating that a combination of the bullet-rosette and Voronoi models is sufficient for retrieval of the ice cloud's spherical albedo and optical thickness as effective habit models for the SGLI sensor. Finally, SAD analysis based on the Voronoi habit model with moderate particle size (Deff = 60 µm) is compared with the conventional general habit mixture model, inhomogeneous hexagonal monocrystal model, five-plate aggregate model, and ensemble ice particle model. The Voronoi habit model is found to have an effect similar to that found in some conventional models for the retrieval of ice cloud properties from space-borne radiometric observations.


2013 ◽  
Vol 6 (6) ◽  
pp. 10731-10759 ◽  
Author(s):  
G. Milinevsky ◽  
V. Danylevsky ◽  
V. Bovchaliuk ◽  
A. Bovchaliuk ◽  
Ph. Goloub ◽  
...  

Abstract. The paper presents an investigation of aerosol seasonal variations in several urban sites in the East European region. Our analysis of seasonal variations of optical and physical aerosol parameters is based on the sun-photometer 2008–2012 data from three urban ground-based AERONET sites in Ukraine (Kyiv, Kyiv-AO, and Lugansk) and one site in Belarus (Minsk), as well as on satellite POLDER instrument data for urban areas in Ukraine. Aerosol amount and optical thickness values exhibit peaks in the spring (April–May) and late summer (August), whereas minimum values are seen in late autumn over the Kyiv and Minsk sites. The results show that aerosol fine mode particles are most frequently detected during the spring and late summer seasons. The seasonal variation similarity in the two regions points to the resemblance in basic aerosol sources which are closely related to properties of aerosol particles. However the aerosol amount and properties change noticeably from year to year and from region to region. The analysis of seasonal aerosol optical thickness variations over the urban sites in the eastern and western parts of Ukraine according to both ground-based and POLDER data exhibits the same traits. In particular, over Kyiv, the values of the Angstrom exponent are lower in April of 2011 than in 2009 and 2010, while aerosol optical thickness values are almost the same, which can be explained by an increase in the amount of coarse mode particles in the atmosphere, such as Saharan dust. Moreover, the coarse mode particles prevailed over suburbs and the center of Kyiv during a third of all available days of observation in 2012. In general, the fine and coarse mode particles' modal radii averaged over 2008–2012 range from 0.1 to 0.2 μm and 2 to 5 μm, respectively, during the period from April to September. The single scattering albedo and refractive index values of these particles correspond to a mix of urban-industrial, biomass burning, and dust aerosols. In addition, strongly absorbing particles were observed in the period from October to March, and the modal radius of fine and coarse mode particles changed from month to month widely.


2010 ◽  
Vol 3 (3) ◽  
pp. 2107-2164 ◽  
Author(s):  
W. von Hoyningen-Huene ◽  
J. Yoon ◽  
M. Vountas ◽  
L. G. Istomina ◽  
G. Rohen ◽  
...  

Abstract. For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main influences on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on ENVISAT) and SeaWiFS (Sea viewing Wide Fiels Sensor on OrbView-2) observations are the existence of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412–0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. Normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface BRDF is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by OPAC or from experimental campaigns. Validations of the obtained AOT retrieval results with AERONET data over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for trends in AOT.


1999 ◽  
Vol 12 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Ming-Dah Chou ◽  
Kyu-Tae Lee ◽  
Si-Chee Tsay ◽  
Qiang Fu

Abstract A parameterization for the scattering of thermal infrared (longwave) radiation by clouds has been developed based on discrete-ordinate multiple-scattering calculations. The effect of backscattering is folded into the emission of an atmospheric layer and the absorption between levels by scaling the cloud optical thickness. The scaling is a function of the single-scattering albedo and asymmetry factor. For wide ranges of cloud particle size, optical thickness, height, and atmospheric conditions, flux errors induced by the parameterization are small. They are <4 W m−2 (2%) in the upward flux at the top of the atmosphere and <2 W m−2 (1%) in the downward flux at the surface. Compared to the case that scattering by clouds is neglected, the flux errors are more than a factor of 2 smaller. The maximum error in cooling rate is ≈8%, which occurs at the top of clouds, as well as at the base of high clouds where the difference between the cloud and surface temperatures is large. With the scaling approximation, radiative transfer equations for a cloudy atmosphere are identical with those for a clear atmosphere, and the difficulties in applying a multiple-scattering algorithm to a partly cloudy atmosphere (assuming homogeneous clouds) are avoided. The computational efficiency is practically the same as that for a clear atmosphere. The parameterization represents a significant reduction in one source of the errors involved in the calculation of longwave cooling in cloudy atmospheres.


2015 ◽  
Vol 8 (7) ◽  
pp. 7843-7878
Author(s):  
N. Y. Chubarova ◽  
A. A. Poliukhov ◽  
I. D. Gorlova

Abstract. The aerosol properties of the atmosphere were obtained within the framework of the AERONET program at the Moscow State University Meteorological Observatory (Moscow MSU MO) over 2001–2014 period. The quality data control has revealed the necessity of their additional cloud and NO2 correction. The application of cloud correction according to hourly visual cloud observations provides a decrease in average aerosol optical thickness (AOT) at 500 nm of up to 0.03 compared with the standard dataset. We also show that the additional NO2 correction of the AERONET data is needed in large megalopolis, like Moscow, with 12 million residents and the NOx emission rates of about 100 kt yr−1. According to the developed method we estimated monthly mean NO2 content, which provides an additional decrease of 0.01 for AOT at 340 nm, and of about 0.015 – for AOT at 380 and 440 nm. The ratios of NO2 optical thickness to AOT at 380 and 440 nm are about 5–6 % in summer and reach 15–20 % in winter when both factors have similar effects on UV irradiance. Seasonal cycle of AOT at 500 nm is characterized by a noticeable summer and spring maxima, and minimum in winter conditions, changing from 0.08 in December and January up to 0.3 in August. The application of the additional cloud correction removes a local AOT maximum in February, and lowered the December artificial high AOT values. The pronounced negative AOT trends of about −1–5 % yr−1 have been obtained for most months, which could be attributed to the negative trends in emissions (E) of different aerosol precursors of about 116 Gg yr−2 in ESOx, 78 Gg yr−2 in ENMVOC, and 272 Gg yr−2 in ECO over European territory of Russia. No influence of natural factors on temporal AOT variations has been revealed.


2021 ◽  
Vol 13 (24) ◽  
pp. 5082
Author(s):  
Qianguang Tu ◽  
Yun Zhao ◽  
Jing Guo ◽  
Chunmei Cheng ◽  
Liangliang Shi ◽  
...  

Six years of hourly aerosol optical thickness (AOT) data retrieved from Himawari-8 were used to investigate the spatial and temporal variations, especially diurnal variations, of aerosols over the China Seas. First, the Himawari-8 AOT data were consistent with the AERONET measurements over most of the China Seas, except for some coastal regions. The spatial feature showed that AOT over high latitude seas was generally larger than over low latitude seas, and it is distributed in strips along the coastline and decreases gradually with increasing distance from the coastline. AOT undergoes diurnal variation as it decreases from 9:00 a.m. local time, reaching a minimum at noon, and then begins to increase in the afternoon. The percentage daily departure of AOT over the East China Seas generally ranged ±20%, increasing sharply in the afternoon; however, over the northern part of the South China Sea, daily departure reached a maximum of >40% at 4:00 p.m. The monthly variation in AOT showed a pronounced annual cycle. Seasonal variations of the spatial pattern showed that the largest AOT was usually observed in spring and varies in other seasons for different seas.


Sign in / Sign up

Export Citation Format

Share Document