scholarly journals A two-dimensional Stockwell Transform for gravity wave analysis of AIRS measurements

Author(s):  
N. P. Hindley ◽  
N. D. Smith ◽  
C. J. Wright ◽  
N. J. Mitchell

Abstract. Gravity waves play a critical role in the dynamics of the middle atmosphere due to their ability to transport energy and momentum from their sources to great heights. The accurate parametrization of gravity wave momentum flux is of key importance to general circulation models. For the last decade, the nadir-viewing Atmospheric Infrared Sounder (AIRS) aboard NASA’s Aqua satellite has made global, two-dimensional (2-D) measurements of stratospheric radiances in which gravity waves can be detected. Current methods for gravity wave analysis of these data can introduce unwanted biases. Here, we present a new analysis method. Our method uses a 2-D Stockwell transform (2DST) to determine gravity wave horizontal wavelengths and directions in both directions simultaneously. We demonstrate that our method can accurately recover horizontal wavelengths and directions from a specified wave field. We show that the use of an elliptical spectral windowing function in the 2DST, in place of a Gaussian, can dramatically improve the recovery of wave amplitude. We measure momentum flux in two granules of AIRS measurements in two regions known to be intense hot spots of gravity wave activity: (i) the Drake Pas- sage/Antarctic Peninsula and (ii) the isolated mountainous island of South Georgia. We show that our 2DST method provides improved spatial localisation of key gravity wave properties over current methods. The added flexibility offered by alternative spectral windowing functions and scaling parameters presented here extend the usefulness of our 2DST method to other areas of geophysical data analysis.

2016 ◽  
Vol 9 (6) ◽  
pp. 2545-2565 ◽  
Author(s):  
Neil P. Hindley ◽  
Nathan D. Smith ◽  
Corwin J. Wright ◽  
D. Andrew S. Rees ◽  
Nicholas J. Mitchell

Abstract. Gravity waves (GWs) play a crucial role in the dynamics of the earth's atmosphere. These waves couple lower, middle and upper atmospheric layers by transporting and depositing energy and momentum from their sources to great heights. The accurate parameterisation of GW momentum flux is of key importance to general circulation models but requires accurate measurement of GW properties, which has proved challenging. For more than a decade, the nadir-viewing Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite has made global, two-dimensional (2-D) measurements of stratospheric radiances in which GWs can be detected. However, one problem with current one-dimensional methods for GW analysis of these data is that they can introduce significant unwanted biases. Here, we present a new analysis method that resolves this problem. Our method uses a 2-D Stockwell transform (2DST) to measure GW amplitudes, horizontal wavelengths and directions of propagation using both the along-track and cross-track dimensions simultaneously. We first test our new method and demonstrate that it can accurately measure GW properties in a specified wave field. We then show that by using a new elliptical spectral window in the 2DST, in place of the traditional Gaussian, we can dramatically improve the recovery of wave amplitude over the standard approach. We then use our improved method to measure GW properties and momentum fluxes in AIRS measurements over two regions known to be intense hotspots of GW activity: (i) the Drake Passage/Antarctic Peninsula and (ii) the isolated mountainous island of South Georgia. The significance of our new 2DST method is that it provides more accurate, unbiased and better localised measurements of key GW properties compared to most current methods. The added flexibility offered by the scaling parameter and our new spectral window presented here extend the usefulness of our 2DST method to other areas of geophysical data analysis and beyond.


2020 ◽  
Vol 77 (10) ◽  
pp. 3601-3618
Author(s):  
B. Quinn ◽  
C. Eden ◽  
D. Olbers

AbstractThe model Internal Wave Dissipation, Energy and Mixing (IDEMIX) presents a novel way of parameterizing internal gravity waves in the atmosphere. IDEMIX is based on the spectral energy balance of the wave field and has previously been successfully developed as a model for diapycnal diffusivity, induced by internal gravity wave breaking in oceans. Applied here for the first time to atmospheric gravity waves, integration of the energy balance equation for a continuous wave field of a given spectrum, results in prognostic equations for the energy density of eastward and westward gravity waves. It includes their interaction with the mean flow, allowing for an evolving and local description of momentum flux and gravity wave drag. A saturation mechanism maintains the wave field within convective stability limits, and a closure for critical-layer effects controls how much wave flux propagates from the troposphere into the middle atmosphere. Offline comparisons to a traditional parameterization reveal increases in the wave momentum flux in the middle atmosphere due to the mean-flow interaction, resulting in a greater gravity wave drag at lower altitudes. Preliminary validation against observational data show good agreement with momentum fluxes.


2014 ◽  
Vol 7 (6) ◽  
pp. 7559-7573
Author(s):  
S. Watanabe ◽  
K. Sato ◽  
Y. Kawatani ◽  
M. Takahashi

Abstract. The dependence of the gravity wave spectra of energy and momentum flux on the horizontal resolution and time step of atmospheric general circulation models (AGCMs) has been thoroughly investigated in the past. In contrast, much less attention has been given to the dependence of these gravity wave parameters on models' vertical resolutions. The present study demonstrates the dependence of gravity wave momentum flux in the stratosphere and mesosphere on the model's vertical resolution, which is evaluated using an AGCM with a horizontal resolution of about 0.56°. We performed a series of sensitivity test simulations changing only the model's vertical resolution above a height of 8 km, and found that inertial gravity waves with short vertical wavelengths simulated at higher vertical resolutions likely play an important role in determining the gravity wave momentum flux in the stratosphere and mesosphere.


2017 ◽  
Author(s):  
Kathrin Baumgarten ◽  
Michael Gerding ◽  
Gerd Baumgarten ◽  
Franz-Josef Lübken

Abstract. Gravity waves (GW) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly infected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not implemented in many circulation models. The daylight capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12&deg E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement which shows a large variability of gravity waves and tides on time scales of days. Using a 1-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement a strong 24 h-wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4–8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GW in general circulation models.


2021 ◽  
Author(s):  
Natalie Kaifler ◽  
Bernd Kaifler ◽  
Andreas Dörnbrack ◽  
Sonja Gisinger ◽  
Tyler Mixa ◽  
...  

<p>During the SOUTHTRAC-GW (Southern hemisphere Transport, Dynamics and Chemistry – Gravity Waves) field campaign, gravity waves above the Southern Andes mountains, the Drake passage and the Antarctic Peninsula were probed with airborne instruments onboard the HALO research aircraft. The Airborne Lidar for Middle Atmosphere research (ALIMA) detected particularly strong mountain waves in excess of 25 K amplitude in cross-mountain legs above the Southern Andes of research flight ST08 on 12 September 2019. The mountain waves propagated well into the mesosphere up to 65 km altitude with possible generation of smaller-scale secondary waves during wave breaking above 65 km. A superposition of mountain waves with horizontal wavelengths in the range 15-200 km and vertical wavelengths 7-24 km dominated the wave field between 18 and 65 km altitude. Vertical wavelengths predicted by the hydrostatic equation and horizontal wind from the European Center for Medium-Range Weather Forecasts’ Integrated Forecasting System are in good agreement with observed vertical wavelengths. We apply wavelet analysis to the measured temperature field along the flight track in order to identify and separate dominant scales, and estimate their relative contributions to the total gravity wave momentum flux as well as the local and zonal-mean gravity wave drag. Furthermore, we compare our observations to results obtained by Fourier ray analysis of the terrain of the Southern Andes. The Fourier model allows the investigation of the 3d-wave field and trapped waves which are not well sampled by the ALIMA instrument because of the relative alignment between the wave fronts and the flight track. These sampling biases are quantified from virtual flights through the model domain at multiple angles and taken into account in the estimation of the total momentum flux derived from ALIMA observations. The combination of high-resolution observations and model data reveals the significance of this and similar mountain wave events in the Southern Andes region for the atmospheric dynamics at ~60° S.</p>


2018 ◽  
Vol 18 (1) ◽  
pp. 371-384 ◽  
Author(s):  
Kathrin Baumgarten ◽  
Michael Gerding ◽  
Gerd Baumgarten ◽  
Franz-Josef Lübken

Abstract. Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh–Mie–Raman (RMR) lidar at Kühlungsborn (54∘ N, 12∘ E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4–8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave–wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.


2011 ◽  
Vol 68 (8) ◽  
pp. 1749-1765 ◽  
Author(s):  
Stephen D. Eckermann

Abstract A straightforward methodology is presented for converting the deterministic multiwave parameterizations of nonorographic gravity wave drag, currently used in general circulation models (GCMs), to stochastic analogs that use fewer waves (in the example herein, a single wave) within each grid box. Deterministic discretizations of source-level momentum flux spectra using a fixed spectrum of many waves with predefined phase speeds are replaced by sampling these source spectra stochastically using waves with randomly assigned phase speeds. Using simple conversion formulas, it is shown that time-mean wave-induced drag, diffusion, and heating-rate profiles identical to those from the deterministic scheme are produced by the stochastic analog. Furthermore, in these examples the need for bulk intermittency factors of small value is largely obviated through the explicit incorporation of stochastic intermittency into the scheme. When implemented in a GCM, the single-wave stochastic analog of an existing deterministic scheme reproduces almost identical time-mean middle-atmosphere climate and drag as its deterministic antecedent but with an order of magnitude reduction in computational expense. The stochastically parameterized drag is also accompanied by inherent variability about the time-mean profile that forces the smallest space–time scales of the GCM. Studies of mean GCM kinetic energy spectra show that this additional stochastic forcing does not lead to excessive increases in dynamical variability at these smallest GCM scales. The results show that the expensive deterministic schemes currently used in GCMs are easily modified and replaced by cheap stochastic analogs without any obvious deleterious impacts on GCM climate or variability, while offering potential advantages of computational savings, reduction of systematic climate biases, and greater and more realistic ensemble spread.


2006 ◽  
Vol 19 (16) ◽  
pp. 3882-3901 ◽  
Author(s):  
M. A. Giorgetta ◽  
E. Manzini ◽  
E. Roeckner ◽  
M. Esch ◽  
L. Bengtsson

Abstract The quasi-biennial oscillation (QBO) in the equatorial zonal wind is an outstanding phenomenon of the atmosphere. The QBO is driven by a broad spectrum of waves excited in the tropical troposphere and modulates transport and mixing of chemical compounds in the whole middle atmosphere. Therefore, the simulation of the QBO in general circulation models and chemistry climate models is an important issue. Here, aspects of the climatology and forcing of a spontaneously occurring QBO in a middle-atmosphere model are evaluated, and its influence on the climate and variability of the tropical middle atmosphere is investigated. Westerly and easterly phases are considered separately, and 40-yr ECMWF Re-Analysis (ERA-40) data are used as a reference where appropriate. It is found that the simulated QBO is realistic in many details. Resolved large-scale waves are particularly important for the westerly phase, while parameterized gravity wave drag is more important for the easterly phase. Advective zonal wind tendencies are important for asymmetries between westerly and easterly phases, as found for the suppression of the easterly phase downward propagation. The simulation of the QBO improves the tropical upwelling and the atmospheric tape recorder compared to a model without a QBO. The semiannual oscillation is simulated realistically only if the QBO is represented. In sensitivity tests, it is found that the simulated QBO is strongly sensitive to changes in the gravity wave sources. The sensitivity to the tested range of horizontal resolutions is small. The stratospheric vertical resolution must be better than 1 km to simulate a realistic QBO.


2021 ◽  
Author(s):  
Cornelia Strube ◽  
Peter Preusse ◽  
Manfred Ern ◽  
Martin Riese

Abstract. In the southern winter polar stratosphere the distribution of gravity wave momentum flux in many state-of-the-art climate simulations is inconsistent with long-time satellite and superpressure balloon observations around 60° S. Recent studies hint that a lateral shift between prominent gravity wave sources in the tropospheric mid-latitudes and the location where gravity wave activity is present in the stratosphere causes at least parts of the discrepancy. This lateral shift cannot be represented by the column-based gravity wave drag parametrisations used in most general circulation models. However, recent high-resolution analysis and re-analysis products of the ECMWF-IFS show good agreement to observations and allow for a detailed investigation of resolved gravity waves, their sources and propagation paths. In this paper, we identify resolved gravity waves in the ECMWF-IFS analyses for a case of high gravity wave activity in the lower stratosphere using small-volume sinusoidal fits to characterise these gravity waves. The 3D wave vector together with perturbation amplitudes, wave frequency and a fully described background atmosphere are then used to initialise the GROGRAT gravity wave ray-tracer and follow the gravity waves backwards from the stratosphere. Finally, we check for indication of source processes on the path of each ray and thus quantitatively attribute gravity waves to sources that are represented within the model. We find that stratospheric gravity waves are indeed subject to far (> 1000 km) lateral displacement from their sources, taking place already at low altitudes (


2015 ◽  
Vol 8 (6) ◽  
pp. 1637-1644 ◽  
Author(s):  
S. Watanabe ◽  
K. Sato ◽  
Y. Kawatani ◽  
M. Takahashi

Abstract. The dependence of the gravity wave spectra of energy and momentum flux on the horizontal resolution and time step of atmospheric general circulation models (AGCMs) has been thoroughly investigated in the past. In contrast, much less attention has been given to the dependence of these gravity wave parameters on models' vertical resolutions. The present study demonstrates the dependence of gravity wave momentum flux (GWMF) in the stratosphere and mesosphere on the model's vertical resolution, which is evaluated using an AGCM with a horizontal resolution of about 0.56°. We performed a series of sensitivity test simulations changing only the model's vertical resolution above a height of 8 km, and found a global reduction of GWMF with increasing vertical resolution. Inertial gravity waves with short vertical wavelengths simulated at higher vertical resolutions might play an important role in determining GWMF in the summertime stratosphere. The sensitivity test simulation also demonstrated the importance of the model's vertical resolution on representing realistic behaviors of gravity waves near their critical level.


Sign in / Sign up

Export Citation Format

Share Document