scholarly journals Investigation of observational error sources in multi Doppler radar vertical air motion retrievals: Impacts and possible solutions

2018 ◽  
Author(s):  
Mariko Oue ◽  
Pavlos Kollias ◽  
Alan Shapiro ◽  
Aleksandra Tatarevic ◽  
Toshihisa Matsui

Abstract. Multi-Doppler radar network observations have been used in different configurations over the last several decades to conduct three-dimensional wind retrievals in mesoscale convective systems. Here, the impact of the selected radar volume coverage pattern (VCP), the sampling time for the VCP, the number of radars used, and the added value of advection correction on the retrieval of the vertical air motion in the upper part of convective clouds is examined using the Weather Research and Forecasting (WRF) model simulation, the Cloud Resolving Model Radar SIMulator (CR-SIM) and a three-dimensional variational multi-Doppler radar retrieval technique. Comparisons between the model truth (i.e., WRF kinematic fields) and updraft properties (updraft fraction, updraft magnitude, and mass flux) retrieved from the CR-SIM-generated multi-Doppler radar field are used to investigate these impacts. In overall, the VCP elevation strategy and sampling time is found to have a significant effect on the retrieved updraft properties above 6 km altitude. Retrievals conducted using a 2-min or shorter VCPs show small impacts on the updraft retrievals, and the errors are comparable to retrievals using a snapshot cloud field. Increasing the density of elevations angles and/or an addition of data from one more radar can reduce this uncertainty. It is found that the VCP with dense elevation angles appears to be more effective than the addition of data from the fourth radar, if the VCP is performed in 2 minutes. The use of dense elevation angles combined with an advection correction applied to the 2-min VCPs can effectively improve the updraft retrievals. For longer VCP sampling periods (5 min) the errors are considerably larger, and the value of advection correction is challenging due to the rapid deformation of the dynamical structures in the simulated mesoscale convective system. This study highlights several limiting factors in the retrieval of upper-level vertical velocity from multi-Doppler radar networks and suggests that the use of rapid-scan radars can substantially improve the quality of wind retrievals if conducted in a limited spatial domain.

2019 ◽  
Vol 12 (3) ◽  
pp. 1999-2018 ◽  
Author(s):  
Mariko Oue ◽  
Pavlos Kollias ◽  
Alan Shapiro ◽  
Aleksandra Tatarevic ◽  
Toshihisa Matsui

Abstract. Multi-Doppler-radar network observations have been used in different configurations over the last several decades to conduct three-dimensional wind retrievals in mesoscale convective systems. Here, the impacts of the selected radar volume coverage pattern (VCP), the sampling time for the VCP, the number of radars used, and the added value of advection correction on the retrieval of the vertical air motion in the upper part of convective clouds are examined using the Weather Research and Forecasting (WRF) model simulation, the Cloud Resolving Model Radar SIMulator (CR-SIM), and a three-dimensional variational multi-Doppler-radar retrieval technique. Comparisons between the model truth (i.e., WRF kinematic fields) and updraft properties (updraft fraction, updraft magnitude, and mass flux) retrieved from the CR-SIM-generated multi-Doppler-radar field are used to investigate these impacts. The findings are that (1) the VCP elevation strategy and sampling time have a significant effect on the retrieved updraft properties above 6 km in altitude; (2) 2 min or shorter VCPs have small impacts on the retrievals, and the errors are comparable to retrievals using a snapshot cloud field; (3) increasing the density of elevation angles in the VCP appears to be more effective to reduce the uncertainty than an addition of data from one more radar, if the VCP is performed in 2 min; and (4) the use of dense elevation angles combined with an advection correction applied to the 2 min VCPs can effectively improve the updraft retrievals, but for longer VCP sampling periods (5 min) the value of advection correction is challenging. This study highlights several limiting factors in the retrieval of upper-level vertical velocity from multi-Doppler-radar networks and suggests that the use of rapid-scan radars can substantially improve the quality of wind retrievals if conducted in a limited spatial domain.


2012 ◽  
Vol 140 (7) ◽  
pp. 2147-2167 ◽  
Author(s):  
Xuanli Li ◽  
John R. Mecikalski

Abstract The dual-polarization (dual pol) Doppler radar can transmit/receive both horizontally and vertically polarized power returns. The dual-pol radar measurements have been shown to provide a more accurate precipitation estimate compared to traditional radars. In this study, the horizontal reflectivity ZH, differential reflectivity ZDR, specific differential phase KDP, and radial velocity VR collected by the C-band Advanced Radar for Meteorological and Operational Research (ARMOR) are assimilated for two convective storms. A warm-rain scheme is constructed to assimilate ZH, ZDR, and KDP data using the three-dimensional variational data assimilation (3DVAR) system with the Advanced Research Weather Research and Forecasting Model (ARW-WRF). The main goals of this study are first to demonstrate and compare the impact of various dual-pol variables in initialization of real case convective storms and second to test how the dual-pol fields may be better used with a 3DVAR system. The results show that the ZH, ZDR, KDP, and VR data substantially improve the initial condition for two mesoscale convective storms. Significant positive impacts on short-term forecast are obtained for both storms. Additionally, KDP and ZDR data assimilation is shown to be superior to ZH and ZDR and ZH-only data assimilation when the warm-rain microphysics is adopted. With the ongoing upgrade of the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network to include dual-pol capabilities (started in early 2011), the findings from this study can be a helpful reference for utilizing the dual-pol radar data in numerical simulations of severe weather and related quantitative precipitation forecasts.


2013 ◽  
Vol 141 (11) ◽  
pp. 3691-3709 ◽  
Author(s):  
Ryan A. Sobash ◽  
David J. Stensrud

Abstract Several observing system simulation experiments (OSSEs) were performed to assess the impact of covariance localization of radar data on ensemble Kalman filter (EnKF) analyses of a developing convective system. Simulated Weather Surveillance Radar-1988 Doppler (WSR-88D) observations were extracted from a truth simulation and assimilated into experiments with localization cutoff choices of 6, 12, and 18 km in the horizontal and 3, 6, and 12 km in the vertical. Overall, increasing the horizontal localization and decreasing the vertical localization produced analyses with the smallest RMSE for most of the state variables. The convective mode of the analyzed system had an impact on the localization results. During cell mergers, larger horizontal localization improved the results. Prior state correlations between the observations and state variables were used to construct reverse cumulative density functions (RCDFs) to identify the correlation length scales for various observation-state pairs. The OSSE with the smallest RMSE employed localization cutoff values that were similar to the horizontal and vertical length scales of the prior state correlations, especially for observation-state correlations above 0.6. Vertical correlations were restricted to state points closer to the observations than in the horizontal, as determined by the RCDFs. Further, the microphysical state variables were correlated with the reflectivity observations on smaller scales than the three-dimensional wind field and radial velocity observations. The ramifications of these findings on localization choices in convective-scale EnKF experiments that assimilate radar data are discussed.


2013 ◽  
Vol 70 (7) ◽  
pp. 1891-1911 ◽  
Author(s):  
Anthony C. Didlake ◽  
Robert A. Houze

Abstract Airborne Doppler radar documented the stratiform sector of a rainband within the stationary rainband complex of Hurricane Rita. The stratiform rainband sector is a mesoscale feature consisting of nearly uniform precipitation and weak vertical velocities from collapsing convective cells. Upward transport and associated latent heating occur within the stratiform cloud layer in the form of rising radial outflow. Beneath, downward transport is organized into descending radial inflow in response to two regions of latent cooling. In the outer, upper regions of the rainband, sublimational cooling introduces horizontal buoyancy gradients, which produce horizontal vorticity and descending inflow similar to that of the trailing-stratiform region of a mesoscale convective system. Within the zone of heavier stratiform precipitation, melting cooling along the outer rainband edge creates a midlevel horizontal buoyancy gradient across the rainband that drives air farther inward beneath the brightband. The organization of this transport initially is robust but fades downwind as the convection dissipates. The stratiform-induced secondary circulation results in convergence of angular momentum above the boundary layer and broadening of the storm's rotational wind field. At the radial location where inflow suddenly converges, a midlevel tangential jet develops and extends into the downwind end of the rainband complex. This circulation may contribute to ventilation of the eyewall as inflow of low-entropy air continues past the rainband in both the boundary layer and midlevels. Given the expanse of the stratiform rainband region, its thermodynamic and kinematic impacts likely help to modify the structure and intensity of the total vortex.


2013 ◽  
Vol 2013 ◽  
pp. 1-18
Author(s):  
Edward Natenberg ◽  
Jidong Gao ◽  
Ming Xue ◽  
Frederick H. Carr

A three-dimensional variational (3DVAR) assimilation technique developed for a convective-scale NWP model—advanced regional prediction system (ARPS)—is used to analyze the 8 May 2003, Moore/Midwest City, Oklahoma tornadic supercell thunderstorm. Previous studies on this case used only one or two radars that are very close to this storm. However, three other radars observed the upper-level part of the storm. Because these three radars are located far away from the targeted storm, they were overlooked by previous studies. High-frequency intermittent 3DVAR analyses are performed using the data from five radars that together provide a more complete picture of this storm. The analyses capture a well-defined mesocyclone in the midlevels and the wind circulation associated with a hook-shaped echo. The analyses produced through this technique are used as initial conditions for a 40-minute storm-scale forecast. The impact of multiple radars on a short-term NWP forecast is most evident when compared to forecasts using data from only one and two radars. The use of all radars provides the best forecast in which a strong low-level mesocyclone develops and tracks in close proximity to the actual tornado damage path.


2020 ◽  
Vol 37 (4) ◽  
pp. 705-722 ◽  
Author(s):  
Zhiqiang Cui ◽  
Zhaoxia Pu ◽  
G. David Emmitt ◽  
Steven Greco

AbstractHigh-spatiotemporal-resolution airborne Doppler Aerosol Wind (DAWN) lidar profiles over the Caribbean Sea and Gulf of Mexico region were collected during the NASA Convective Processes Experiment (CPEX) field campaign from 27 May to 24 June 2017. This study examines the impact of assimilating these wind profiles on the numerical simulation of moist convective systems using an Advanced Research version of the Weather Research and Forecasting (WRF) Model (WRF-ARW). A mesoscale convective system and a tropical storm (Cindy) that occurred on 16 June 2017 in a strong shear environment and on 21 June 2017 in a weak shear environment, respectively, are selected as case studies. The DAWN wind profiles are assimilated with the NCEP Gridpoint Statistical Interpolation analysis system using a three-dimensional variational (3DVar) and a hybrid three-dimensional ensemble-variational (3DEnVar) data assimilation systems to provide the initial conditions for a short-range forecast. Results show that the assimilation of DAWN wind profiles has significant positive impacts on convective simulations with the two assimilation approaches. The assimilation of DAWN wind profiles creates notable adjustments in the analysis of the divergence field for WRF simulations with a good agreement of wind forecasts with radiosonde observations. The quantitative precipitation forecasting is also improved. In general, the 3DEnVar data assimilation method is deemed more promising for DAWN data assimilation. There are cases with Tropical Storm Cindy in which DAWN data have slight to neutral impact on rainfall forecasts with 3DVAR, implying complicated interactions between errors of retrieved wind data and background error covariance in the lower and upper troposphere.


2019 ◽  
Vol 148 (1) ◽  
pp. 211-240 ◽  
Author(s):  
Rachel L. Miller ◽  
Conrad L. Ziegler ◽  
Michael I. Biggerstaff

Abstract This case study analyzes a nocturnal mesoscale convective system (MCS) that was observed on 25–26 June 2015 in northeastern Kansas during the Plains Elevated Convection At Night (PECAN) project. Over the course of the observational period, a broken line of elevated nocturnal convective cells initiated around 0230 UTC on the cool side of a stationary front and subsequently merged to form a quasi-linear MCS that later developed strong, surface-based outflow and a trailing stratiform region. This study combines radar observations with mobile and fixed mesonet and sounding data taken during PECAN to analyze the kinematics and thermodynamics of the MCS from 0300 to 0630 UTC. This study is unique in that 38 consecutive multi-Doppler wind analyses are examined over the 3.5 h observation period, facilitating a long-duration analysis of the kinematic evolution of the nocturnal MCS. Radar analyses reveal that the initial convective cells and linear MCS are elevated and sustained by an elevated residual layer formed via weak ascent over the stationary front. During upscale growth, individual convective cells develop storm-scale cold pools due to pockets of descending rear-to-front flow that are measured by mobile mesonets. By 0500 UTC, kinematic analysis and mesonet observations show that the MCS has a surface-based cold pool and that convective line updrafts are ingesting parcels from below the stable layer. In this environment, the elevated system has become surface based since the cold pool lifting is sufficient for surface-based parcels to overcome the CIN associated with the frontal stable layer.


2020 ◽  
Vol 35 (1) ◽  
pp. 51-66 ◽  
Author(s):  
L. Cucurull ◽  
M. J. Mueller

Abstract Observing system simulation experiments (OSSEs) were conducted to evaluate the potential impact of the six Global Navigation Satellite System (GNSS) radio occultation (RO) receiver satellites in equatorial orbit from the initially proposed Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission, known as COSMIC-2A. Furthermore, the added value of the high-inclination component of the proposed mission was investigated by considering a few alternative architecture designs, including the originally proposed polar constellation of six satellites (COSMIC-2B), a constellation with a reduced number of RO receiving satellites, and a constellation of six satellites but with fewer observations in the lower troposphere. The 2015 year version of the operational three-dimensional ensemble–variational data assimilation system of the National Centers for Environment Prediction (NCEP) was used to run the OSSEs. Observations were simulated and assimilated using the same methodology and their errors assumed uncorrelated. The largest benefit from the assimilation of COSMIC-2A, with denser equatorial coverage, was to improve tropical winds, and its impact was found to be overall neutral in the extratropics. When soundings from the high-inclination orbit were assimilated in addition to COSMIC-2A, positive benefits were found globally, confirming that a high-inclination orbit constellation of RO receiving satellites is necessary to improve weather forecast skill globally. The largest impact from reducing COSMIC-2B from six to four satellites was to slightly degrade weather forecast skill in the Northern Hemisphere extratropics. The impact of degrading COSMIC-2B to the COSMIC level of accuracy, in terms of penetration into the lower troposphere, was mostly neutral.


Sign in / Sign up

Export Citation Format

Share Document