scholarly journals Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals

2019 ◽  
Vol 12 (3) ◽  
pp. 1999-2018 ◽  
Author(s):  
Mariko Oue ◽  
Pavlos Kollias ◽  
Alan Shapiro ◽  
Aleksandra Tatarevic ◽  
Toshihisa Matsui

Abstract. Multi-Doppler-radar network observations have been used in different configurations over the last several decades to conduct three-dimensional wind retrievals in mesoscale convective systems. Here, the impacts of the selected radar volume coverage pattern (VCP), the sampling time for the VCP, the number of radars used, and the added value of advection correction on the retrieval of the vertical air motion in the upper part of convective clouds are examined using the Weather Research and Forecasting (WRF) model simulation, the Cloud Resolving Model Radar SIMulator (CR-SIM), and a three-dimensional variational multi-Doppler-radar retrieval technique. Comparisons between the model truth (i.e., WRF kinematic fields) and updraft properties (updraft fraction, updraft magnitude, and mass flux) retrieved from the CR-SIM-generated multi-Doppler-radar field are used to investigate these impacts. The findings are that (1) the VCP elevation strategy and sampling time have a significant effect on the retrieved updraft properties above 6 km in altitude; (2) 2 min or shorter VCPs have small impacts on the retrievals, and the errors are comparable to retrievals using a snapshot cloud field; (3) increasing the density of elevation angles in the VCP appears to be more effective to reduce the uncertainty than an addition of data from one more radar, if the VCP is performed in 2 min; and (4) the use of dense elevation angles combined with an advection correction applied to the 2 min VCPs can effectively improve the updraft retrievals, but for longer VCP sampling periods (5 min) the value of advection correction is challenging. This study highlights several limiting factors in the retrieval of upper-level vertical velocity from multi-Doppler-radar networks and suggests that the use of rapid-scan radars can substantially improve the quality of wind retrievals if conducted in a limited spatial domain.

2018 ◽  
Author(s):  
Mariko Oue ◽  
Pavlos Kollias ◽  
Alan Shapiro ◽  
Aleksandra Tatarevic ◽  
Toshihisa Matsui

Abstract. Multi-Doppler radar network observations have been used in different configurations over the last several decades to conduct three-dimensional wind retrievals in mesoscale convective systems. Here, the impact of the selected radar volume coverage pattern (VCP), the sampling time for the VCP, the number of radars used, and the added value of advection correction on the retrieval of the vertical air motion in the upper part of convective clouds is examined using the Weather Research and Forecasting (WRF) model simulation, the Cloud Resolving Model Radar SIMulator (CR-SIM) and a three-dimensional variational multi-Doppler radar retrieval technique. Comparisons between the model truth (i.e., WRF kinematic fields) and updraft properties (updraft fraction, updraft magnitude, and mass flux) retrieved from the CR-SIM-generated multi-Doppler radar field are used to investigate these impacts. In overall, the VCP elevation strategy and sampling time is found to have a significant effect on the retrieved updraft properties above 6 km altitude. Retrievals conducted using a 2-min or shorter VCPs show small impacts on the updraft retrievals, and the errors are comparable to retrievals using a snapshot cloud field. Increasing the density of elevations angles and/or an addition of data from one more radar can reduce this uncertainty. It is found that the VCP with dense elevation angles appears to be more effective than the addition of data from the fourth radar, if the VCP is performed in 2 minutes. The use of dense elevation angles combined with an advection correction applied to the 2-min VCPs can effectively improve the updraft retrievals. For longer VCP sampling periods (5 min) the errors are considerably larger, and the value of advection correction is challenging due to the rapid deformation of the dynamical structures in the simulated mesoscale convective system. This study highlights several limiting factors in the retrieval of upper-level vertical velocity from multi-Doppler radar networks and suggests that the use of rapid-scan radars can substantially improve the quality of wind retrievals if conducted in a limited spatial domain.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yumei Ding ◽  
Lei Ding

A hindcast of typical extratropical storm surge occurring in the Bohai Sea in October 2003 is performed using a three-dimensional (3D) Finite Volume Coastal Ocean Model (FVCOM). The storm surge model is forced by 10 m winds obtained from the Weather Research Forecasting (WRF) model simulation. It is shown that the simulated storm surge and tides agree well with the observations. The nonlinear interaction between the surge and astronomical tides, the spatial distribution of the maximum surge level, and the hydrodynamic response to the storm surge are studied. The storm surge is the interaction of the surge and the astronomical tides. The currents change rapidly during the storm surge and turn to be the unidirectional at some places where the tidal currents are usually rectilinear. The results show that the local surge current velocity in each depth, with a magnitude of the same order as the astronomic tidal currents, increases or decreases rapidly depending on the relationship between the winds and current directions. Furthermore, the current pattern gets more complicated under the influence of the direction of the winds, which might affect sand movement in the coastal water of the Bohai Sea.


2016 ◽  
Vol 59 (3) ◽  
Author(s):  
Mohammad Ali Sharifi ◽  
Majid Azadi ◽  
Ali Sam Khaniani

<p>In this work, the effect of assimilation of synoptic, radiosonde and ground-based GPS precipitable water vapor (PWV) data has been investigated on the short-term prediction of precipitation, vertical relative humidity and PWV fields over north of Iran. We selected two rainfall events (i.e. February 1, 2014, and September 17, 2014) caused by synoptic systems affecting the southern coasts of the Caspian Sea. These systems are often associated with a shallow and cold high pressure located over Russia that extends towards the southern Caspian Sea. The three dimensional variational (3DVAR) data assimilation system of the weather research and forecasting (WRF) model is used in two rainfall cases. In each case, three numerical experiments, namely CTRL, CONVDA and GPSCONVDA, are performed. The CTRL experiment uses the global analysis as the initial and boundary conditions of the model. In the second experiment, surface and radiosonde observations are inserted into the model. Finally, the GPSCONVDA experiment uses the GPS PWV data in the assimilation process in addition to the conventional observations. It is found that in CONVDA experiment, the mean absolute error (MAE) of the accumulated precipitation is reduced about 5 and 13 percent in 24h model simulation of February and September cases, respectively, when compared to CTRL. Also, the results in both cases suggest that the assimilation of GPS data has the greatest impact on model PWV simulations, with maximum root mean squares error (RMSE) reduction of 0.7 mm. In the GPSCONVDA experiment, comparison of the vertical profiles of 12h simulated relative humidity with the corresponding radiosonde observations shows a slight improvement in the lower levels.</p>


2020 ◽  
Vol 148 (11) ◽  
pp. 4607-4627
Author(s):  
Craig R. Ferguson ◽  
Shubhi Agrawal ◽  
Mark C. Beauharnois ◽  
Geng Xia ◽  
D. Alex Burrows ◽  
...  

AbstractIn the context of forecasting societally impactful Great Plains low-level jets (GPLLJs), the potential added value of satellite soil moisture (SM) data assimilation (DA) is high. GPLLJs are both sensitive to regional soil moisture gradients and frequent drivers of severe weather, including mesoscale convective systems. An untested hypothesis is that SM DA is more effective in forecasts of weakly synoptically forced, or uncoupled GPLLJs, than in forecasts of cyclone-induced coupled GPLLJs. Using the NASA Unified Weather Research and Forecasting (NU-WRF) Model, 75 GPLLJs are simulated at 9-km resolution both with and without NASA Soil Moisture Active Passive SM DA. Differences in modeled SM, surface sensible (SH) and latent heat (LH) fluxes, 2-m temperature (T2), 2-m humidity (Q2), PBL height (PBLH), and 850-hPa wind speed (W850) are quantified for individual jets and jet-type event subsets over the south-central Great Plains, as well as separately for each GPLLJ sector (entrance, core, and exit). At the GPLLJ core, DA-related changes of up to 5.4 kg m−2 in SM can result in T2, Q2, LH, SH, PBLH, and W850 differences of 0.68°C, 0.71 g kg−2, 59.9 W m−2, 52.4 W m−2, 240 m, and 4 m s−1, respectively. W850 differences focus along the jet axis and tend to increase from south to north. Jet-type differences are most evident at the GPLLJ exit where DA increases and decreases W850 in uncoupled and coupled GPLLJs, respectively. Data assimilation marginally reduces negative wind speed bias for all jets, but the correction is greater for uncoupled GPLLJs, as hypothesized.


Author(s):  
Tran Duy Thuc ◽  
Cong Thanh

Abstract: This article using high resolution WRF model simulation on a heavy rainfall in summer at Hochiminh city by using radar data to assimilation initial conditions with 3DVAR method, the WRF3Dvar running simulation with two modes: cold start and warm start combine with three cases: only Reflectivity of radar; Reflectivity and Doppler radar radial wind observations; Reflectivity, Doppler radar radial wind, and GTS data. The background error used was CV7 created from 6 months forecast in South Vietnam. Radar data before assimilation was quality control and thinned to remove noise and create the best observation. 24 station rainfall in South Vietnam using to an evaluation of WRF model simulation. Results show assimilation only reflectivity will affect to variable qcloud, qvapor and qrain on the initial condition of model and assimilation only Doppler radar radial wind improve wind. Compare each case show warm start simulation precipitation better than the cold start, assimilation both Doppler radar radial wind observations, the reflectivity of radar and GTS better than another case. Key words: WRFDA,RADAR


2017 ◽  
Vol 145 (1) ◽  
pp. 289-306 ◽  
Author(s):  
Sheng-Lun Tai ◽  
Yu-Chieng Liou ◽  
Juanzhen Sun ◽  
Shao-Fan Chang

Abstract The four-dimensional Variational Doppler Radar Analysis System (VDRAS) developed at the National Center for Atmospheric Research (NCAR) is significantly improved by implementing a terrain-resolving scheme to its forward model and adjoint based on the ghost cell immersed boundary method (GCIBM), which allows the topographic effects to be considered without the necessity to rebuild the model on a terrain-following coordinate system. The new system, called IBM_VDRAS, is able to perform forward forecast and backward adjoint model integration over nonflat lower boundaries, ranging from mountains with smooth slopes to buildings with sharp surfaces. To evaluate the performance of the forward model over complex terrain, idealized numerical experiments of a two-dimensional linear mountain wave and three-dimensional leeside vortices are first conducted, followed by a comparison with a simulation by the Weather Research and Forecasting (WRF) Model. An observing system simulation experiment is also conducted with the assimilation of simulated radar data to examine the ability of IBM_VDRAS in analyzing orographically forced moist convection. It is shown that the IBM_VDRAS can retrieve terrain-influenced three-dimensional meteorological fields including winds, thermodynamic, and microphysical parameters with reasonable accuracy. The new system, with the advanced radar data assimilation capability and the GCIBM terrain scheme, has the potential to be used for studying the evolution of convective weather systems under the influence of terrain.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 142
Author(s):  
Ping Wang ◽  
Kai Gu ◽  
Jinyi Hou ◽  
Bingjie Dou

Airflow structures within convective systems are important predictors of damaging convective disasters. To automatically recognize different kinds of airflow structures (the convergence, divergence, cyclonic rotation, and anticyclonic rotation) within convective systems, an airflow structure recognition method is proposed, in this paper, based on a regular hexagonal template. On the basis of single Doppler radar data, the template is designed according to the appearance model of airflows in radial velocity maps. The proposed method is able to output types and intensities of airflow structures within convective systems. In addition, the outputs of the proposed method are integrated into a projection map of the airflow field structure types and intensities (PMAFSTI), which is developed in this work to visualize three-dimensional airflow structures within convective cells. The proposed airflow structure automatic recognition method and the PMAFSTI were tested using three typical cases. Results of the tests suggest the following: (1) At different evolution stages of the convective systems, e.g., growth, split, and dissipation, the three-dimensional distribution of the airflow fields within convective systems could be clearly observed through the PMAFSTI and (2) on the basis of recognizing the structures of the airflow field, the complex airflow field, such as a squall line, could be further divided into several small parts making the analysis of convective systems more scientific and elaborate.


2010 ◽  
Vol 138 (5) ◽  
pp. 1695-1714 ◽  
Author(s):  
David G. Lerach ◽  
Steven A. Rutledge ◽  
Christopher R. Williams ◽  
Robert Cifelli

Abstract This study describes the vertical structure of mesoscale convective systems (MCSs) that characterized the 2004 North American monsoon utilizing observations from a 2875-MHz (S band) profiler and a dual-polarimetric scanning Doppler radar. Both instrument platforms operated nearly continuously during the North American Monsoon Experiment (NAME). A technique was developed to identify dominant hydrometeor type using S-band (profiler) reflectivity along with temperature. The simplified hydrometeor identification (HID) algorithm matched polarimetric scanning radar fuzzy logic–based HID results quite well. However, the simplified algorithm lacked the ability to identify ice hydrometeors below the melting layer and on occasion, underestimated the vertical extent of graupel because of a profiler reflectivity bias. Three of the strongest NAME convective rainfall events recorded by the profiler are assessed in this study. Stratiform rain exhibited a reflectivity bright band and strong Doppler velocity gradient within the melting layer. Convective rainfall exhibited high reflectivity and Doppler velocities exceeding 3 (−10) m s−1 in updrafts (downdrafts). Low-density graupel persisted above the melting layer, often extending to 10 km, with high-density graupel observed near 0°C. Doppler velocity signatures suggested that updrafts and downdrafts were often tilted, though estimating the degree of tilt would have required a more three-dimensional view of the passing storms. Cumulative frequency distributions (CFDs) of reflectivity were created for stratiform and convective rainfall and were found to be similar to results from other tropical locations.


2013 ◽  
Vol 141 (5) ◽  
pp. 1612-1628 ◽  
Author(s):  
Corey K. Potvin ◽  
Louis J. Wicker ◽  
Michael I. Biggerstaff ◽  
Daniel Betten ◽  
Alan Shapiro

Abstract Kinematical analyses of storm-scale mobile radar observations are critical to advancing our understanding of supercell thunderstorms. Maximizing the accuracy of these analyses, and characterizing the uncertainty in ensuing conclusions about storm structure and processes, requires knowledge of the error characteristics of different retrieval techniques under different observational scenarios. Using storm-scale mobile radar observations of a tornadic supercell, this study examines the impacts on ensemble Kalman filter (EnKF) wind analyses of the number of available radars (one versus two), uncertainty in the model-initialization sounding, the sophistication of the microphysical parameterization scheme (double versus single moment), and assimilating reflectivity observations. The relative accuracy of three-dimensional variational data assimilation (3DVAR) dual-Doppler wind retrievals and single- and dual-radar EnKF wind analyses of the supercell is also explored. The results generally reinforce the findings of a previous study that used observing system simulation experiments to explore the same issues. Both studies suggest that single-radar EnKF wind analyses can be very useful once enough data have been assimilated, but that subsequent analyses that operate on the retrieved wind field gradients should be interpreted with caution. In the present study, severe errors appear to occur in computed Lagrangian circulation time series, imperiling interpretation of the underlying dynamics. This result strongly suggests that dual- and multiple-Doppler radar deployment strategies continue to be used in mobile field campaigns.


Sign in / Sign up

Export Citation Format

Share Document