scholarly journals Aqueous particle generation with a 3D printed nebulizer

2020 ◽  
Author(s):  
Michael Rösch ◽  
Daniel J. Cziczo

Abstract. In this study, we describe the design and testing of a high output stability constant liquid feed nebulizer using the Venturi principle to generate liquid particles from solutions. This atomizer, the PRinted drOpleT Generator (PROTeGE) was manufactured using stereolithography (SLA) printing. Different concentrations of ammonium sulfate solutions were used to characterize the size and number concentration of the generated particles. A comparison of a 3D printed 0.5 mm orifice with a more dimensionally accurate and symmetric machined 0.5 mm brass orifice using the same ammonium sulfate solutions was also performed. PROTeGE is also shown to be capable of dispersing polystyrene latex spheres (PSLs) for calibration purposes. The particle number concentrations obtained in this study ranged from ~10 000 cm−3 for 0.75 micrometer to ~100 cm−3 for 5.0 micrometer PSL particles with a dependence on the concentration of the dispersed solution. PROTeGE is easy to manufacture and operate, low in maintenance, and cost-effective for laboratory and field generation of particles from aqueous media.

2020 ◽  
Vol 13 (12) ◽  
pp. 6807-6812
Author(s):  
Michael Rösch ◽  
Daniel J. Cziczo

Abstract. In this study, we describe the design and testing of a high-output-stability, constant-liquid-feed nebulizer using the Venturi principle to generate liquid particles from solutions. This atomizer, the PRinted drOpleT Generator (PROTeGE), was manufactured using stereolithography (SLA) printing. Different concentrations of ammonium sulfate solutions were used to characterize the size and number concentration of the generated particles. A comparison of a 3D printed 0.5 mm orifice against a commercially available 0.5 mm brass orifice using the same ammonium sulfate solution was also performed. The particle number concentration generated with the printed orifice was higher, by ∼×2, than the particle number concentration generated with the brass orifice. PROTeGE is also capable of dispersing polystyrene latex (PSL) spheres for calibration purposes. The particle number concentrations obtained in this study ranged from ∼ 10 000 cm−3 for 0.75 µm to ∼ 100 cm−3 for 5.0 µm PSL particles with a dependence on the concentration of the dispersed solution. For the different concentrated ammonium sulfate solutions particle number concentrations from ∼ 14 000 cm−3 for 0.1 g L−1 to 7600 cm−3 for 5.0 g L−1 were measured. An additional measurement with a scanning electrical mobility system (SEMS) was performed for the 0.6 g L−1 solution to measure particles in the size range of 10 to 1000 nm. The generated particle number size distributions (PNSDs) showed a maximum at 50 nm with particle number concentrations of ∼ 40 000 cm−3. PROTeGE is easy to manufacture and operate, low in maintenance, and cost-effective for laboratory and field generation of particles from aqueous media in a size range of 10 to 5000 nm.


2018 ◽  
Vol 9 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Shubhangi J. Mane-Gavade ◽  
Sandip R. Sabale ◽  
Xiao-Ying Yu ◽  
Gurunath H. Nikam ◽  
Bhaskar V. Tamhankar

Introduction: Herein we report the green synthesis and characterization of silverreduced graphene oxide nanocomposites (Ag-rGO) using Acacia nilotica gum for the first time. Experimental: We demonstrate the Hg2+ ions sensing ability of the Ag-rGO nanocomposites form aqueous medium. The developed colorimetric sensor method is simple, fast and selective for the detection of Hg2+ ions in aqueous media in presence of other associated ions. A significant color change was noticed with naked eye upon Hg2+ addition. The color change was not observed for cations including Sr2+, Ni2+, Cd2+, Pb2+, Mg2+, Ca2+, Fe2+, Ba2+ and Mn2+indicating that only Hg2+ shows a strong interaction with Ag-rGO nanocomposites. Under the most suitable condition, the calibration plot (A0-A) against concentration of Hg2+ was linear in the range of 0.1-1.0 ppm with a correlation coefficient (R2) value 0.9998. Results & Conclusion The concentration of Hg2+ was quantitatively determined with the Limit of Detection (LOD) of 0.85 ppm. Also, this method shows excellent selectivity towards Hg2+ over nine other cations tested. Moreover, the method offers a new cost effective, rapid and simple approach for the detection of Hg2+ in water samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haoran Wang ◽  
Anton Enders ◽  
John-Alexander Preuss ◽  
Janina Bahnemann ◽  
Alexander Heisterkamp ◽  
...  

Abstract3D printing of microfluidic lab-on-a-chip devices enables rapid prototyping of robust and complex structures. In this work, we designed and fabricated a 3D printed lab-on-a-chip device for fiber-based dual beam optical manipulation. The final 3D printed chip offers three key features, such as (1) an optimized fiber channel design for precise alignment of optical fibers, (2) an optically clear window to visualize the trapping region, and (3) a sample channel which facilitates hydrodynamic focusing of samples. A square zig–zag structure incorporated in the sample channel increases the number of particles at the trapping site and focuses the cells and particles during experiments when operating the chip at low Reynolds number. To evaluate the performance of the device for optical manipulation, we implemented on-chip, fiber-based optical trapping of different-sized microscopic particles and performed trap stiffness measurements. In addition, optical stretching of MCF-7 cells was successfully accomplished for the purpose of studying the effects of a cytochalasin metabolite, pyrichalasin H, on cell elasticity. We observed distinct changes in the deformability of single cells treated with pyrichalasin H compared to untreated cells. These results demonstrate that 3D printed microfluidic lab-on-a-chip devices offer a cost-effective and customizable platform for applications in optical manipulation.


RSC Advances ◽  
2021 ◽  
Vol 11 (43) ◽  
pp. 26683-26686
Author(s):  
Md. Mahiuddin ◽  
Bungo Ochiai

Lemon juice effectively served as a reducing and capping agent for an easy, cost-effective, and green synthesis of crystalline bismuth nanoparticles (BiNPs) in basic aqueous media.


The Analyst ◽  
2021 ◽  
Author(s):  
Diwakar M. Awate ◽  
Cicero C. Pola ◽  
Erica Shumaker ◽  
Carmen L Gomes ◽  
Jaime Javier Juarez

Despite having widespread application in the biomedical sciences, flow cytometers have several limitations that prevent their application to point-of-care (POC) diagnostics in resource-limited environments. 3D printing provides a cost-effective approach...


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3234
Author(s):  
Wangwang Yu ◽  
Lili Dong ◽  
Wen Lei ◽  
Yuhan Zhou ◽  
Yongzhe Pu ◽  
...  

To develop a new kind of environment-friendly composite filament for fused deposition modeling (FDM) 3D printing, rice straw powder (RSP)/poly(lactic acid) (PLA) biocomposites were FDM-3D-printed, and the effects of the particle size and pretreatment of RSP on the properties of RSP/PLA biocomposites were investigated. The results indicated that the 120-mesh RSP/PLA biocomposites (named 120#RSP/PLA) showed better performance than RSP/PLA biocomposites prepared with other RSP sizes. Infrared results showed that pretreatment of RSP by different methods was successful, and scanning electron microscopy indicated that composites prepared after pretreatment exhibited good interfacial compatibility due to a preferable binding force between fiber and matrix. When RSP was synergistically pretreated by alkaline and ultrasound, the composite exhibited a high tensile strength, tensile modulus, flexural strength, and flexural modulus of 58.59, 568.68, 90.32, and 3218.12 MPa, respectively, reflecting an increase of 31.19%, 16.48%, 18.75%, and 25.27%, respectively, compared with unmodified 120#RSP/PLA. Pretreatment of RSP also improved the thermal stability and hydrophobic properties, while reducing the water absorption of 120#RSP/PLA. This work is believed to provide highlights of the development of cost-effective biocomposite filaments and improvement of the properties of FDM parts.


2008 ◽  
Vol 53 (8) ◽  
pp. 1713-1724 ◽  
Author(s):  
Parampaul K. Banipal ◽  
Vickramjeet Singh ◽  
Gurpreet Kaur ◽  
Mandeep Kaur ◽  
Tarlok S. Banipal

2021 ◽  
Author(s):  
Serhat Sevli ◽  
not provided C. Yunus Sahan

Microfluidics materials are of various types and application-specific. PDMS is one of the most preferred and cost-effective solutions for research and low-volume manufacturing. After having the mold, PDMS replicas are generated by a technique called soft-lithography. This protocol describes the preparation of PDMS microchannels using SU8 molds, 3D Printed resin molds, and/or metal molds by the soft lithography technique, SLA printing, or CNC machining.


Sign in / Sign up

Export Citation Format

Share Document