scholarly journals Interference from alkenes in chemiluminescent NO<sub><i>x</i></sub> measurements

2020 ◽  
Author(s):  
Mohammed S. Alam ◽  
Leigh R. Crilley ◽  
James D. Lee ◽  
Louisa J. Kramer ◽  
Christian Pfrang ◽  
...  

Abstract. Nitrogen oxides (NOx = NO + NO2) are critical intermediates in atmospheric chemistry. NOx levels control the cycling and hence abundance of the primary atmospheric oxidants OH and NO3, and regulate the ozone production which results from the degradation of volatile organic compounds (VOCs) in the presence of sunlight. They are also atmospheric pollutants, and NO2 is commonly included in air quality objectives and regulations. NOx levels also affect the production of the nitrate component of secondary aerosol particles and other pollutants such as the lachrymator peroxyacetyl nitrate (PAN). The accurate measurement of NO and NO2 is therefore crucial to air quality monitoring and understanding atmospheric composition. The most commonly used approach for measurement of NO is chemiluminescent detection of electronically excited NO2 (NO2*) from the NO + O3 reaction. Alkenes, ubiquitous in the atmosphere from biogenic and anthropogenic sources, also react with ozone to produce chemiluminescence and thus may contribute to the measured NOx signal. Their ozonolysis reaction may also be sufficiently rapid that their abundance in the instrument background cycle, which also utilises reaction with ozone, differs from the measurement cycle – such that the background subtraction is incomplete, and an interference effect results. This interference has been noted previously, and indeed the effect has been used to measure both alkenes and ozone in the atmosphere. Here we report the results of a systematic investigation of the response of a selection of commercial NOx monitors, ranging from systems used for routine air quality monitoring to atmospheric research instrumentation, to a series of alkenes. Alkenes investigated range from short chain alkenes, such as ethene, to the biogenic monoterpenes. Experiments were performed in the European Photoreactor (EUPHORE) to ensure common calibration and samples for the monitors, and to unequivocally confirm the alkene levels present (via FTIR). The instrument interference responses ranged from negligible levels up to 11 % depending upon the alkene present and conditions used (e.g. presence of co-reactants and differing humidity). Such interferences may be of substantial importance for the interpretation of ambient NOx data, particularly for high-VOC, low-NOx environments such as forests, or indoor environments where alkene abundance from personal care and cleaning products may be significant.

2020 ◽  
Vol 13 (11) ◽  
pp. 5977-5991
Author(s):  
Mohammed S. Alam ◽  
Leigh R. Crilley ◽  
James D. Lee ◽  
Louisa J. Kramer ◽  
Christian Pfrang ◽  
...  

Abstract. Nitrogen oxides (NOx=NO+NO2) are critical intermediates in atmospheric chemistry and air pollution. NOx levels control the cycling and hence abundance of the primary atmospheric oxidants OH and NO3 and regulate the ozone production which results from the degradation of volatile organic compounds (VOCs) in the presence of sunlight. They are also atmospheric pollutants, and NO2 is commonly included in air quality objectives and regulations. NOx levels also affect the production of the nitrate component of secondary aerosol particles and other pollutants, such as the lachrymator peroxyacetyl nitrate (PAN). The accurate measurement of NO and NO2 is therefore crucial for air quality monitoring and understanding atmospheric composition. The most commonly used approach for the measurement of NO is the chemiluminescent detection of electronically excited NO2 (NO2∗) formed from the NO + O3 reaction within the NOx analyser. Alkenes, ubiquitous in the atmosphere from biogenic and anthropogenic sources, also react with ozone to produce chemiluminescence and thus may contribute to the measured NOx signal. Their ozonolysis reaction may also be sufficiently rapid that their abundance in conventional instrument background cycles, which also utilises the reaction with ozone, differs from that in the measurement cycle such that the background subtraction is incomplete, and an interference effect results. This interference has been noted previously, and indeed, the effect has been used to measure both alkenes and ozone in the atmosphere. Here we report the results of a systematic investigation of the response of a selection of commercial NOx monitors to a series of alkenes. These NOx monitors range from systems used for routine air quality monitoring to atmospheric research instrumentation. The species-investigated range was from short-chain alkenes, such as ethene, to the biogenic monoterpenes. Experiments were performed in the European PHOtoREactor (EUPHORE) to ensure common calibration and samples for the monitors and to unequivocally confirm the alkene levels present (via Fourier transform infrared spectroscopy – FTIR). The instrument interference responses ranged from negligible levels up to 11 %, depending upon the alkene present and conditions used (e.g. the presence of co-reactants and differing humidity). Such interferences may be of substantial importance for the interpretation of ambient NOx data, particularly for high VOC, low NOx environments such as forests or indoor environments where alkene abundance from personal care and cleaning products may be significant.


2017 ◽  
Vol 200 ◽  
pp. 693-703 ◽  
Author(s):  
Jos Lelieveld

In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt “clean air” as a sustainable development goal.


2015 ◽  
Vol 8 (2) ◽  
pp. 603-647 ◽  
Author(s):  
E. D. Sofen ◽  
D. Bowdalo ◽  
M. J. Evans ◽  
F. Apadula ◽  
P. Bonasoni ◽  
...  

Abstract. The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.


Nanoscale ◽  
2021 ◽  
Author(s):  
I. Brian Becerril-Castro ◽  
Franklin Munoz-Munoz ◽  
Ana B. Castro-Ceseña ◽  
Ana L Gonzalez ◽  
Ramon A Alvarez-Puebla ◽  
...  

Plasmonic reversible gas sensors are of paramount importance for the monitoring of indoor environments. Herein we design and engineer a plasmonic foam, with a high surface area, confined inside a...


2016 ◽  
Vol 8 (1) ◽  
pp. 41-59 ◽  
Author(s):  
E. D. Sofen ◽  
D. Bowdalo ◽  
M. J. Evans ◽  
F. Apadula ◽  
P. Bonasoni ◽  
...  

Abstract. The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.


2011 ◽  
Vol 6 (3) ◽  
pp. 63-72 ◽  
Author(s):  
Jarmila Rimbalová ◽  
Silvia Vilčeková ◽  
Adriana Eštoková

Sign in / Sign up

Export Citation Format

Share Document