scholarly journals Review: Experimental methodology and procedure for SAPPHIRE: a Semi-automatic APParatus for High-voltage Ice nucleation REsearch

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Author(s):  
Jens-Michael Löwe ◽  
Markus Schremb ◽  
Volker Hinrichsen ◽  
Cameron Tropea

Abstract. Ice nucleation is of great interest for various processes such as cloud formation in the scope of atmospheric research, and icing of airplanes, ships or structures. Ice nucleation research aims to improve the knowledge about the physical mechanisms and, therefore improve the safety and reliability of the applications affected by ice nucleation. Several influencing factors like liquid supercooling or contamination with nucleants, as well as external disturbances such as an electric field or surface defects affect ice nucleation. Especially for ice crystal formation in clouds and icing of high-voltage equipment, an external electric field may have a strong impact on ice nucleation. Although ice nucleation has been widely investigated for numerous conditions, the effect of an electric field on nucleation is not yet completely understood; results reported in literature are even contradictory. In the present study, an advanced experimental approach for the examination of ice nucleation in water droplets exposed to an electric field is demonstrated. It comprises a method for droplet ensemble preparation and an experimental setup, which allows observation of the droplet ensemble during its exposure to well-defined thermal and electric fields, which are both variable over a wide range. The entire approach aims at maximizing the accuracy and repeatability of the experiments in order to enable examination of even the most minor influences on ice nucleation. For that purpose, the boundary conditions the droplet sample is exposed to during the experiment are examined in particular detail using experimental and numerical methods. The methodological capabilities and accuracy have been demonstrated based on several test nucleation experiments without an electric field, indicating almost perfect repeatability.


2021 ◽  
Vol 14 (1) ◽  
pp. 223-238 ◽  
Author(s):  
Jens-Michael Löwe ◽  
Markus Schremb ◽  
Volker Hinrichsen ◽  
Cameron Tropea

Abstract. Ice nucleation is of great interest for various processes such as cloud formation in the scope of atmospheric physics, and icing of airplanes, ships, or structures. Ice nucleation research aims to improve the knowledge about the physical mechanisms and to ensure the safety and reliability of the respective applications. Several influencing factors like liquid supercooling or contamination with nucleants, as well as external disturbances such as an electric field or surface defects, affect ice nucleation. Especially for ice crystal formation in clouds and icing of high-voltage equipment, an external electric field may also have a strong impact on ice nucleation. Although ice nucleation has been widely investigated for numerous conditions, the effect of an electric field on ice nucleation is not yet completely understood; results reported in literature are even contradictory on some issues. In the present study, an advanced experimental approach for the examination of ice nucleation in water droplets exposed to an electric field is described. It comprises a method for droplet ensemble preparation and an experimental setup, which allows observation of the droplet ensemble during its exposure to well-defined thermal and electric fields, which are both variable over a wide range. The entire approach aims at maximizing the accuracy and repeatability of the experiments in order to enable examination of even the most minor influences on ice nucleation. For that purpose, the boundary conditions the droplet sample is exposed to during the experiment are examined in particular detail using experimental and numerical methods. The methodological capabilities and accuracy have been demonstrated based on several ice nucleation experiments without an electric field, indicating almost perfect repeatability.


2009 ◽  
Vol 42 (7) ◽  
pp. 879-884 ◽  
Author(s):  
Marta Orlowska ◽  
Michel Havet ◽  
Alain Le-Bail

2014 ◽  
Vol 14 (4) ◽  
pp. 1853-1867 ◽  
Author(s):  
D. O'Sullivan ◽  
B. J. Murray ◽  
T. L. Malkin ◽  
T. F. Whale ◽  
N. S. Umo ◽  
...  

Abstract. Agricultural dust emissions have been estimated to contribute around 20% to the global dust burden. In contrast to dusts from arid source regions, the ice-nucleating abilities of which have been relatively well studied, soil dusts from fertile sources often contain a substantial fraction of organic matter. Using an experimental methodology which is sensitive to a wide range of ice nucleation efficiencies, we have characterised the immersion mode ice-nucleating activities of dusts (d < 11 μm) extracted from fertile soils collected at four locations around England. By controlling droplet sizes, which ranged in volume from 10−12 to 10−6 L (concentration = 0.02 to 0.1 wt% dust), we have been able to determine the ice nucleation behaviour of soil dust particles at temperatures ranging from 267 K (−6 °C) down to the homogeneous limit of freezing at about 237 K (−36 °C). At temperatures above 258 K (−15 °C) we find that the ice-nucleating activity of soil dusts is diminished by heat treatment or digestion with hydrogen peroxide, suggesting that a major fraction of the ice nuclei stems from biogenic components in the soil. However, below 258 K, we find that the ice active site densities tend towards those expected from the mineral components in the soils, suggesting that the inorganic fraction of soil dusts, in particular the K-feldspar fraction, becomes increasingly important in the initiation of the ice phase at lower temperatures. We conclude that dusts from agricultural activities could contribute significantly to atmospheric IN concentrations, if such dusts exhibit similar activities to those observed in the current laboratory study.


2013 ◽  
Vol 13 (8) ◽  
pp. 20275-20317 ◽  
Author(s):  
D. O'Sullivan ◽  
B. J. Murray ◽  
T. L. Malkin ◽  
T. Whale ◽  
N. S. Umo ◽  
...  

Abstract. Agricultural dust emissions have been estimated to contribute around 20% to the global dust burden. In contrast to dusts from arid source regions, the ice-nucleating abilities of which have been relatively well studied, soil dusts from fertile sources often contain a substantial fraction of organic matter. Using an experimental methodology which is sensitive to a wide range of ice nucleation efficiencies, we have characterised the immersion mode ice-nucleating activities of dusts extracted from fertile soils collected at four locations around England. By controlling droplet sizes, which ranged in volume from 10−12 to 10−6 L, we have been able to determine the ice nucleation behaviour of soil dust particles at temperatures ranging from 267 K (−6 °C) down to the homogeneous limit of freezing at about 237 K (−36 °C). At temperatures above 258 K (−15 °C) we find that the ice-nucleating activity of soil dusts is diminished by heat treatment or digestion with hydrogen peroxide, suggesting that the ice nuclei stem from biogenic components in the soil. However, below 258 K, we find that the ice active site densities tend towards those expected from the mineral components in the soils, suggesting that the inorganic fraction of soil dusts, in particular the K-feldspar fraction, becomes increasingly important in the initiation of the ice phase at lower temperatures. We conclude that although only a relatively minor contributor to the global atmospheric dust burden, the enhanced IN activities of dusts generated from agricultural activities may play an important role in cloud glaciation, particularly at temperatures above 258 K.


Author(s):  
L. D. Ackerman ◽  
S. H. Y. Wei

Mature human dental enamel has presented investigators with several difficulties in ultramicrotomy of specimens for electron microscopy due to its high degree of mineralization. This study explores the possibility of combining ion-milling and high voltage electron microscopy as a means of circumventing the problems of ultramicrotomy.A longitudinal section of an extracted human third molar was ground to a thickness of about 30 um and polarized light micrographs were taken. The specimen was attached to a single hole grid and thinned by argon-ion bombardment at 15° incidence while rotating at 15 rpm. The beam current in each of two guns was 50 μA with an accelerating voltage of 4 kV. A 20 nm carbon coating was evaporated onto the specimen to prevent an electron charge from building up during electron microscopy.


Author(s):  
Lee D. Peachey ◽  
Clara Franzini-Armstrong

The effective study of biological tissues in thick slices of embedded material by high voltage electron microscopy (HVEM) requires highly selective staining of those structures to be visualized so that they are not hidden or obscured by other structures in the image. A tilt pair of micrographs with subsequent stereoscopic viewing can be an important aid in three-dimensional visualization of these images, once an appropriate stain has been found. The peroxidase reaction has been used for this purpose in visualizing the T-system (transverse tubular system) of frog skeletal muscle by HVEM (1). We have found infiltration with lanthanum hydroxide to be particularly useful for three-dimensional visualization of certain aspects of the structure of the T- system in skeletal muscles of the frog. Specifically, lanthanum more completely fills the lumen of the tubules and is denser than the peroxidase reaction product.


Author(s):  
L. E. Thomas ◽  
J. S. Lally ◽  
R. M. Fisher

In addition to improved penetration at high voltage, the characteristics of HVEM images of crystalline materials are changed markedly as a result of many-beam excitation effects. This leads to changes in optimum imaging conditions for dislocations, planar faults, precipitates and other features.Resolution - Because of longer focal lengths and correspondingly larger aberrations, the usual instrument resolution parameter, CS174 λ 374 changes by only a factor of 2 from 100 kV to 1 MV. Since 90% of this change occurs below 500 kV any improvement in “classical” resolution in the MVEM is insignificant. However, as is widely recognized, an improvement in resolution for “thick” specimens (i.e. more than 1000 Å) due to reduced chromatic aberration is very large.


Sign in / Sign up

Export Citation Format

Share Document