scholarly journals Experimental methodology and procedure for SAPPHIRE:a Semi-automatic APParatus for High-voltage Ice nucleation REsearch

2020 ◽  
Author(s):  
Jens-Michael Löwe ◽  
Markus Schremb ◽  
Volker Hinrichsen ◽  
Cameron Tropea

Abstract. Ice nucleation is of great interest for various processes such as cloud formation in the scope of atmospheric research, and icing of airplanes, ships or structures. Ice nucleation research aims to improve the knowledge about the physical mechanisms and, therefore improve the safety and reliability of the applications affected by ice nucleation. Several influencing factors like liquid supercooling or contamination with nucleants, as well as external disturbances such as an electric field or surface defects affect ice nucleation. Especially for ice crystal formation in clouds and icing of high-voltage equipment, an external electric field may have a strong impact on ice nucleation. Although ice nucleation has been widely investigated for numerous conditions, the effect of an electric field on nucleation is not yet completely understood; results reported in literature are even contradictory. In the present study, an advanced experimental approach for the examination of ice nucleation in water droplets exposed to an electric field is demonstrated. It comprises a method for droplet ensemble preparation and an experimental setup, which allows observation of the droplet ensemble during its exposure to well-defined thermal and electric fields, which are both variable over a wide range. The entire approach aims at maximizing the accuracy and repeatability of the experiments in order to enable examination of even the most minor influences on ice nucleation. For that purpose, the boundary conditions the droplet sample is exposed to during the experiment are examined in particular detail using experimental and numerical methods. The methodological capabilities and accuracy have been demonstrated based on several test nucleation experiments without an electric field, indicating almost perfect repeatability.

2021 ◽  
Vol 14 (1) ◽  
pp. 223-238 ◽  
Author(s):  
Jens-Michael Löwe ◽  
Markus Schremb ◽  
Volker Hinrichsen ◽  
Cameron Tropea

Abstract. Ice nucleation is of great interest for various processes such as cloud formation in the scope of atmospheric physics, and icing of airplanes, ships, or structures. Ice nucleation research aims to improve the knowledge about the physical mechanisms and to ensure the safety and reliability of the respective applications. Several influencing factors like liquid supercooling or contamination with nucleants, as well as external disturbances such as an electric field or surface defects, affect ice nucleation. Especially for ice crystal formation in clouds and icing of high-voltage equipment, an external electric field may also have a strong impact on ice nucleation. Although ice nucleation has been widely investigated for numerous conditions, the effect of an electric field on ice nucleation is not yet completely understood; results reported in literature are even contradictory on some issues. In the present study, an advanced experimental approach for the examination of ice nucleation in water droplets exposed to an electric field is described. It comprises a method for droplet ensemble preparation and an experimental setup, which allows observation of the droplet ensemble during its exposure to well-defined thermal and electric fields, which are both variable over a wide range. The entire approach aims at maximizing the accuracy and repeatability of the experiments in order to enable examination of even the most minor influences on ice nucleation. For that purpose, the boundary conditions the droplet sample is exposed to during the experiment are examined in particular detail using experimental and numerical methods. The methodological capabilities and accuracy have been demonstrated based on several ice nucleation experiments without an electric field, indicating almost perfect repeatability.


2014 ◽  
Vol 14 (4) ◽  
pp. 1853-1867 ◽  
Author(s):  
D. O'Sullivan ◽  
B. J. Murray ◽  
T. L. Malkin ◽  
T. F. Whale ◽  
N. S. Umo ◽  
...  

Abstract. Agricultural dust emissions have been estimated to contribute around 20% to the global dust burden. In contrast to dusts from arid source regions, the ice-nucleating abilities of which have been relatively well studied, soil dusts from fertile sources often contain a substantial fraction of organic matter. Using an experimental methodology which is sensitive to a wide range of ice nucleation efficiencies, we have characterised the immersion mode ice-nucleating activities of dusts (d < 11 μm) extracted from fertile soils collected at four locations around England. By controlling droplet sizes, which ranged in volume from 10−12 to 10−6 L (concentration = 0.02 to 0.1 wt% dust), we have been able to determine the ice nucleation behaviour of soil dust particles at temperatures ranging from 267 K (−6 °C) down to the homogeneous limit of freezing at about 237 K (−36 °C). At temperatures above 258 K (−15 °C) we find that the ice-nucleating activity of soil dusts is diminished by heat treatment or digestion with hydrogen peroxide, suggesting that a major fraction of the ice nuclei stems from biogenic components in the soil. However, below 258 K, we find that the ice active site densities tend towards those expected from the mineral components in the soils, suggesting that the inorganic fraction of soil dusts, in particular the K-feldspar fraction, becomes increasingly important in the initiation of the ice phase at lower temperatures. We conclude that dusts from agricultural activities could contribute significantly to atmospheric IN concentrations, if such dusts exhibit similar activities to those observed in the current laboratory study.


2019 ◽  
Vol 5 (2) ◽  
pp. eaav4316 ◽  
Author(s):  
Mark A. Holden ◽  
Thomas F. Whale ◽  
Mark D. Tarn ◽  
Daniel O’Sullivan ◽  
Richard D. Walshaw ◽  
...  

Understanding how surfaces direct nucleation is a complex problem that limits our ability to predict and control crystal formation. We here address this challenge using high-speed imaging to identify and quantify the sites at which ice nucleates in water droplets on the two natural cleavage faces of macroscopic feldspar substrates. Our data show that ice nucleation only occurs at a few locations, all of which are associated with micron-size surface pits. Similar behavior is observed on α-quartz substrates that lack cleavage planes. These results demonstrate that substrate heterogeneities are the salient factor in promoting nucleation and therefore prove the existence of active sites. We also provide strong evidence that the activity of these sites derives from a combination of surface chemistry and nanoscale topography. Our results have implications for the nucleation of many materials and suggest new strategies for promoting or inhibiting nucleation across a wide range of applications.


Author(s):  
Lam Thuy Duong Nguyen ◽  
Thi Kim Quyen Nguyen ◽  
Nguyen Huu Hanh Pham ◽  
Dang Khoa Le ◽  
Van Chinh Ngo ◽  
...  

We employed tight-binding calculations and Green’s function formalism to investigate the effect of applied electric fields on the energy band and electronic properties of bilayer armchair graphene nanoribbons (BL-AGNRs). The results show that the perpendicular electric field has a strong impact on modifying and controlling the bandgap of BL-AGNRs. At the critical values of this electric field, distortions of energy dispersion in subbands and the formation of new electronic excitation channels occur strongly. These originate from low-lying energies near the Fermi level and move away from the zero-point with the increment of the electric field. Phase transitions and structural changes clearly happen in these materials. The influence of the parallel electric field is less important in changing the gap size, resulting in the absence of the critical voltage over a very wide range [–1.5 V; 1.5 V] for the semiconductor-insulator group. Nevertheless, it is interesting to note the powerful role of the parallel electric field in modifying the energy band and electronic distribution at each energy level. These results contribute to an overall picture of the physics model and electronic structure of BL-AGNRs under stimuli, which can be a pathway to real applications in the future, particularly for electronic devices.


2016 ◽  
Vol 114 (5) ◽  
pp. 810-815 ◽  
Author(s):  
James M. Campbell ◽  
Fiona C. Meldrum ◽  
Hugo K. Christenson

Heterogeneous nucleation is vital to a wide range of areas as diverse as ice nucleation on atmospheric aerosols and the fabrication of high-performance thin films. There is excellent evidence that surface topography is a key factor in directing crystallization in real systems; however, the mechanisms by which nanoscale pits and pores promote nucleation remain unclear. Here, we use natural cleavage defects on Muscovite mica to investigate the activity of topographical features in the nucleation from vapor of ice and various organic crystals. Direct observation of crystallization within surface pockets using optical microscopy and also interferometry demonstrates that these sharply acute features provide extremely effective nucleation sites and allows us to determine the mechanism by which this occurs. A confined phase is first seen to form along the apex of the wedge and then grows out of the pocket opening to generate a bulk crystal after a threshold saturation has been achieved. Ice nucleation proceeds in a comparable manner, although our resolution is insufficient to directly observe a condensate before the growth of a bulk crystal. These results provide insight into the mechanism of crystal deposition from vapor on real surfaces, where this will ultimately enable us to use topography to control crystal deposition on surfaces. They are also particularly relevant to our understanding of processes such as cirrus cloud formation, where such topographical features are likely candidates for the “active sites” that make clay particles effective nucleants for ice in the atmosphere.


2013 ◽  
Vol 13 (8) ◽  
pp. 20275-20317 ◽  
Author(s):  
D. O'Sullivan ◽  
B. J. Murray ◽  
T. L. Malkin ◽  
T. Whale ◽  
N. S. Umo ◽  
...  

Abstract. Agricultural dust emissions have been estimated to contribute around 20% to the global dust burden. In contrast to dusts from arid source regions, the ice-nucleating abilities of which have been relatively well studied, soil dusts from fertile sources often contain a substantial fraction of organic matter. Using an experimental methodology which is sensitive to a wide range of ice nucleation efficiencies, we have characterised the immersion mode ice-nucleating activities of dusts extracted from fertile soils collected at four locations around England. By controlling droplet sizes, which ranged in volume from 10−12 to 10−6 L, we have been able to determine the ice nucleation behaviour of soil dust particles at temperatures ranging from 267 K (−6 °C) down to the homogeneous limit of freezing at about 237 K (−36 °C). At temperatures above 258 K (−15 °C) we find that the ice-nucleating activity of soil dusts is diminished by heat treatment or digestion with hydrogen peroxide, suggesting that the ice nuclei stem from biogenic components in the soil. However, below 258 K, we find that the ice active site densities tend towards those expected from the mineral components in the soils, suggesting that the inorganic fraction of soil dusts, in particular the K-feldspar fraction, becomes increasingly important in the initiation of the ice phase at lower temperatures. We conclude that although only a relatively minor contributor to the global atmospheric dust burden, the enhanced IN activities of dusts generated from agricultural activities may play an important role in cloud glaciation, particularly at temperatures above 258 K.


2016 ◽  
Vol 2 (6) ◽  
pp. e1600345 ◽  
Author(s):  
Zhiyuan He ◽  
Wen Jun Xie ◽  
Zhenqi Liu ◽  
Guangming Liu ◽  
Zuowei Wang ◽  
...  

Heterogeneous ice nucleation (HIN) on ionic surfaces is ubiquitous in a wide range of atmospheric aerosols and at biological interfaces. Despite its great importance in cirrus cloud formation and cryopreservation of cells, organs, and tissues, it remains unclear whether the ion-specific effect on ice nucleation exists. Benefiting from the fact that ions at the polyelectrolyte brush (PB)/water interface can be reversibly exchanged, we report the effect of ions on HIN on the PB surface, and we discover that the distinct efficiency of ions in tuning HIN follows the Hofmeister series. Moreover, a large HIN temperature window of up to 7.8°C is demonstrated. By establishing a correlation between the fraction of ice-like water molecules and the kinetics of structural transformation from liquid- to ice-like water molecules at the PB/water interface with different counterions, we show that our molecular dynamics simulation analysis is consistent with the experimental observation of the ion-specific effect on HIN.


Author(s):  
W. E. King

A side-entry type, helium-temperature specimen stage that has the capability of in-situ electrical-resistivity measurements has been designed and developed for use in the AEI-EM7 1200-kV electron microscope at Argonne National Laboratory. The electrical-resistivity measurements complement the high-voltage electron microscope (HVEM) to yield a unique opportunity to investigate defect production in metals by electron irradiation over a wide range of defect concentrations.A flow cryostat that uses helium gas as a coolant is employed to attain and maintain any specified temperature between 10 and 300 K. The helium gas coolant eliminates the vibrations that arise from boiling liquid helium and the temperature instabilities due to alternating heat-transfer mechanisms in the two-phase temperature regime (4.215 K). Figure 1 shows a schematic view of the liquid/gaseous helium transfer system. A liquid-gas mixture can be used for fast cooldown. The cold tip of the transfer tube is inserted coincident with the tilt axis of the specimen stage, and the end of the coolant flow tube is positioned without contact within the heat exchanger of the copper specimen block (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document