scholarly journals Retrieval of aerosol properties using relative radiance measurements from an all-sky camera

2021 ◽  
Author(s):  
Roberto Román ◽  
Juan C. Antuña-Sánchez ◽  
Victoria E. Cachorro ◽  
Carlos Toledano ◽  
Benjamín Torres ◽  
...  

Abstract. This paper explores the potential of all-sky cameras to retrieve aerosol properties with GRASP code (Generalized Retrieval of Atmosphere and Surface Properties). To this end, normalized sky radiances (NSR) extracted from an all-sky camera at three effective wavelengths (467, 536 and 605 nm) are used in this study. NSR observations are a set of relative (uncalibrated) sky radiances in arbitrary units. NSR observations have been simulated for different aerosol loads and types with the forward radiative transfer module of GRASP, indicating that NSR observations contain information about the aerosol type as well as about the aerosol optical depth (AOD), at least for low and moderate aerosol loads. An additional sensitivity study with synthetic data has been carried out to quantify the theoretical accuracy and precision on the aerosol properties (AOD, size distribution parameters, etc.) retrieved by GRASP using NSR observations as input. As result, the theoretical accuracy on AOD is within ±0.02 for AOD values lower or equal than 0.4; while the theoretical precision goes from 0.01 to 0.05 when AOD at 467 nm varies from 0.1 to 0.5. NSR measurements recorded at Valladolid (Spain) with an all-sky camera for more than two years have been inverted with GRASP. The retrieved aerosol properties are compared with independent values provided by co-located AERONET (AErosol RObotic NETwork) measurements. AOD from both data sets correlate with determination coefficient (r2) values about 0.87. Finally, the novel multi-pixel approach of GRASP is applied to daily camera radiances together, by constraining the temporal variation in certain aerosol properties. This temporal linkage (multi-pixel approach) provides promising results, reducing the highly temporal variation in some aerosol properties retrieved with the standard (one by one or single-pixel) approach. This work implies an advance in the use of all-sky cameras for the retrieval of aerosol properties.

2003 ◽  
Vol 3 (5) ◽  
pp. 1365-1375 ◽  
Author(s):  
M. Vountas ◽  
A. Richter ◽  
F. Wittrock ◽  
J. P. Burrows

Abstract. Over clear ocean waters, photons scattered within the water body contribute significantly to the upwelling flux. In addition to elastic scattering, inelastic Vibrational Raman Scattering (VRS) by liquid water is also playing a role and can have a strong impact on the spectral distribution of the outgoing radiance. Under clear-sky conditions, VRS has an influence on trace gas retrievals from space-borne measurements of the backscattered radiance such as from e.g. GOME (Global Ozone Monitoring Experiment). The effect is particularly important for geo-locations with small solar zenith angles and over waters with low chlorophyll concentration. In this study, a simple ocean reflectance model (Sathyendranath and Platt, 1998) accounting for VRS has been incorporated into a radiative transfer model. The model has been validated by comparison with measurements from a swimming-pool experiment dedicated to detect the effect of scattering within water on the outgoing radiation and also with selected data sets from GOME. The comparisons show good agreement between experimental and model data and highlight the important role of VRS. To evaluate the impact of VRS on trace gas retrieval, a sensitivity study was performed on synthetic data. If VRS is neglected in the data analysis, errors of more than 30% are introduced for the slant column (SC) of BrO over clear ocean scenarios. Exemplarily DOAS retrievals of BrO from real GOME measurements including and excluding a VRS compensation led to comparable results as in the sensitivity study, but with somewhat smaller differences between the two analyses. The results of this work suggest, that DOAS retrievals of atmospheric trace species from measurements of nadir viewing space-borne instruments have to take VRS scattering into account over waters with low chlorophyll concentrations, and that a simple correction term is enough to reduce the errors to an acceptable level.


2003 ◽  
Vol 3 (3) ◽  
pp. 2931-2962 ◽  
Author(s):  
M. Vountas ◽  
A. Richter ◽  
F. Wittrock ◽  
J. P. Burrows

Abstract. Over clear ocean waters, photons scattered within the water body contribute significantly to the upwelling flux. In addition to elastic scattering, inelastic Vibrational Raman Scattering (VRS) by liquid water is also playing a role and can have a strong impact on the spectral distribution of the outgoing radiance. Under clear-sky conditions, VRS has an influence on trace gas retrievals from space-borne measurements of the backscattered radiance such as from e.g. GOME (Global Ozone Monitoring Experiment). The effect is particularly important for geo-locations with small solar zenith angles and over waters with low chlorophyll concentration. In this study, a simple ocean reflectance model (Sathendranath and Platt, 1998) accounting for VRS has been incorporated into a radiative transfer model. The model has been validated by comparison with measurements from a swimming-pool experiment dedicated to detect the effect of scattering within water on the outgoing radiation and also with selected data sets from GOME. The comparisons showed good agreement between experimental and model data and highlight the important role of VRS. To evaluate the impact of VRS on trace gas retrieval, a sensitivity study was performed on synthetic data. If VRS is neglected in the data analysis, errors of about 36% are introduced for the slant column (SC) of BrO over clear ocean scenarios. The VRS-related error for the SC of HCHO is about 75%. Exemplarily DOAS retrievals of BrO from real GOME measurements including and excluding a VRS compensation led to comparable results as in the sensitivity study, but with somewhat smaller differences between the two analyses. The results of this work suggest, that DOAS retrieval of atmospheric trace species from measurements of nadir viewing space-borne instruments have to take VRS scattering into account over waters with low chlorophyll concentrations, and that a simple correction term is enough to reduce the errors to an acceptable level.


2021 ◽  
Author(s):  
Yingda Li ◽  
Michael Y Wang

Abstract Endoscopy and robotics represent two emerging technologies within the field of spine surgery, the former an ultra-MIS approach minimizing the perioperative footprint and the latter leveraging accuracy and precision. Herein, we present the novel incorporation of robotic assistance into endoscopic laminotomy, applied to a 27-yr-old female with a large caudally migrated L4-5 disc herniation. Patient consent was obtained. Robotic guidance was deployed in (1) planning of a focussed laminotomy map, pivoting on a single skin entry point; (2) percutaneous targeting of the interlaminar window; and (3) execution of precision drilling, controlled for depth. Through this case, we illustrated the potential synergy between these 2 technologies in achieving precise bony removal tailored to the patient's unique pathoanatomy while simultaneously introducing safety mechanisms against human error and improving surgical ergonomics.1,2 The physicians consented to the publication of their images.


Author(s):  
Nesma M Fahmy ◽  
Adel M Michael

Abstract Background Modern built-in spectrophotometer software supporting mathematical processes provided a solution for increasing selectivity for multicomponent mixtures. Objective Simultaneous spectrophotometric determination of the three naturally occurring antioxidants—rutin(RUT), hesperidin(HES), and ascorbic acid(ASC)—in bulk forms and combined pharmaceutical formulation. Method This was achieved by factorized zero order method (FZM), factorized derivative method (FD1M), and factorized derivative ratio method (FDRM), coupled with spectrum subtraction(SS). Results Mathematical filtration techniques allowed each component to be obtained separately in either its zero, first, or derivative ratio form, allowing the resolution of spectra typical to the pure components present in Vitamin C Forte® tablets. The proposed methods were applied over a concentration range of 2–50, 2–30, and 10–100 µg/mL for RUT, HES, and ASC, respectively. Conclusions Recent methods for the analysis of binary mixtures, FZM and FD1M, were successfully applied for the analysis of ternary mixtures and compared to the novel FDRM. All were revealed to be specific and sensitive with successful application on pharmaceutical formulations. Validation parameters were evaluated in accordance with the International Conference on Harmonization guidelines. Statistical results were satisfactory, revealing no significant difference regarding accuracy and precision. Highlights Factorized methods enabled the resolution of spectra identical to those of pure drugs present in mixtures. Overlapped spectra of ternary mixtures could be resolved by spectrum subtraction coupled FDRM (SS-FDRM) or by successive application of FZM and FD1M.


2021 ◽  
Vol 13 (9) ◽  
pp. 4648
Author(s):  
Rana Muhammad Adnan ◽  
Kulwinder Singh Parmar ◽  
Salim Heddam ◽  
Shamsuddin Shahid ◽  
Ozgur Kisi

The accurate estimation of suspended sediments (SSs) carries significance in determining the volume of dam storage, river carrying capacity, pollution susceptibility, soil erosion potential, aquatic ecological impacts, and the design and operation of hydraulic structures. The presented study proposes a new method for accurately estimating daily SSs using antecedent discharge and sediment information. The novel method is developed by hybridizing the multivariate adaptive regression spline (MARS) and the Kmeans clustering algorithm (MARS–KM). The proposed method’s efficacy is established by comparing its performance with the adaptive neuro-fuzzy system (ANFIS), MARS, and M5 tree (M5Tree) models in predicting SSs at two stations situated on the Yangtze River of China, according to the three assessment measurements, RMSE, MAE, and NSE. Two modeling scenarios are employed; data are divided into 50–50% for model training and testing in the first scenario, and the training and test data sets are swapped in the second scenario. In Guangyuan Station, the MARS–KM showed a performance improvement compared to ANFIS, MARS, and M5Tree methods in term of RMSE by 39%, 30%, and 18% in the first scenario and by 24%, 22%, and 8% in the second scenario, respectively, while the improvement in RMSE of ANFIS, MARS, and M5Tree was 34%, 26%, and 27% in the first scenario and 7%, 16%, and 6% in the second scenario, respectively, at Beibei Station. Additionally, the MARS–KM models provided much more satisfactory estimates using only discharge values as inputs.


2014 ◽  
Vol 7 (3) ◽  
pp. 781-797 ◽  
Author(s):  
P. Paatero ◽  
S. Eberly ◽  
S. G. Brown ◽  
G. A. Norris

Abstract. The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement of factor elements (BS-DISP). The goal of these methods is to capture the uncertainty of PMF analyses due to random errors and rotational ambiguity. It is shown that the three methods complement each other: depending on characteristics of the data set, one method may provide better results than the other two. Results are presented using synthetic data sets, including interpretation of diagnostics, and recommendations are given for parameters to report when documenting uncertainty estimates from EPA PMF or ME-2 applications.


Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1514-1524 ◽  
Author(s):  
Edip Baysal ◽  
Dan D. Kosloff ◽  
John W. C. Sherwood

Migration of stacked or zero‐offset sections is based on deriving the wave amplitude in space from wave field observations at the surface. Conventionally this calculation has been carried out through a depth extrapolation. We examine the alternative of carrying out the migration through a reverse time extrapolation. This approach may offer improvements over existing migration methods, especially in cases of steeply dipping structures with strong velocity contrasts. This migration method is tested using appropriate synthetic data sets.


Radiocarbon ◽  
2012 ◽  
Vol 54 (3-4) ◽  
pp. 449-474 ◽  
Author(s):  
Sturt W Manning ◽  
Bernd Kromer

The debate over the dating of the Santorini (Thera) volcanic eruption has seen sustained efforts to criticize or challenge the radiocarbon dating of this time horizon. We consider some of the relevant areas of possible movement in the14C dating—and, in particular, any plausible mechanisms to support as late (most recent) a date as possible. First, we report and analyze data investigating the scale of apparent possible14C offsets (growing season related) in the Aegean-Anatolia-east Mediterranean region (excluding the southern Levant and especially pre-modern, pre-dam Egypt, which is a distinct case), and find no evidence for more than very small possible offsets from several cases. This topic is thus not an explanation for current differences in dating in the Aegean and at best provides only a few years of latitude. Second, we consider some aspects of the accuracy and precision of14C dating with respect to the Santorini case. While the existing data appear robust, we nonetheless speculate that examination of the frequency distribution of the14C data on short-lived samples from the volcanic destruction level at Akrotiri on Santorini (Thera) may indicate that the average value of the overall data sets is not necessarily the most appropriate14C age to use for dating this time horizon. We note the recent paper of Soter (2011), which suggests that in such a volcanic context some (small) age increment may be possible from diffuse CO2emissions (the effect is hypothetical at this stage and hasnotbeen observed in the field), and that "if short-lived samples from the same stratigraphic horizon yield a wide range of14C ages, the lower values may be the least altered by old CO2." In this context, it might be argued that a substantive “low” grouping of14C ages observable within the overall14C data sets on short-lived samples from the Thera volcanic destruction level centered about 3326–3328 BP is perhaps more representative of the contemporary atmospheric14C age (without any volcanic CO2contamination). This is a subjective argument (since, in statistical terms, the existing studies using the weighted average remain valid) that looks to support as late a date as reasonable from the14C data. The impact of employing this revised14C age is discussed. In general, a late 17th century BC date range is found (to remain) to be most likelyeven ifsuch a late-dating strategy is followed—a late 17th century BC date range is thus a robust finding from the14C evidence even allowing for various possible variation factors. However, the possibility of a mid-16th century BC date (within ∼1593–1530 cal BC) is increased when compared against previous analyses if the Santorini data are considered in isolation.


Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. F239-F250 ◽  
Author(s):  
Fernando A. Monteiro Santos ◽  
Hesham M. El-Kaliouby

Joint or sequential inversion of direct current resistivity (DCR) and time-domain electromagnetic (TDEM) data commonly are performed for individual soundings assuming layered earth models. DCR and TDEM have different and complementary sensitivity to resistive and conductive structures, making them suitable methods for the application of joint inversion techniques. This potential joint inversion of DCR and TDEM methods has been used by several authors to reduce the ambiguities of the models calculated from each method separately. A new approach for joint inversion of these data sets, based on a laterally constrained algorithm, was found. The method was developed for the interpretation of soundings collected along a line over a 1D or 2D geology. The inversion algorithm was tested on two synthetic data sets, as well as on field data from Saudi Arabia. The results show that the algorithm is efficient and stable in producing quasi-2D models from DCR and TDEM data acquired in relatively complex environments.


Sign in / Sign up

Export Citation Format

Share Document