scholarly journals Towards IASI-New Generation (IASI-NG): impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables

2014 ◽  
Vol 7 (12) ◽  
pp. 4367-4385 ◽  
Author(s):  
C. Crevoisier ◽  
C. Clerbaux ◽  
V. Guidard ◽  
T. Phulpin ◽  
R. Armante ◽  
...  

Abstract. Besides their strong contribution to weather forecast improvement through data assimilation, thermal infrared sounders onboard polar-orbiting platforms are now playing a key role for monitoring atmospheric composition changes. The Infrared Atmospheric Sounding Interferometer (IASI) instrument developed by the French space agency (CNES) and launched by EUMETSAT onboard the Metop satellite series is providing essential inputs for weather forecasting and pollution/climate monitoring owing to its smart combination of large horizontal swath, good spectral resolution and high radiometric performance. EUMETSAT is currently preparing the next polar-orbiting program (EPS-SG) with the Metop-SG satellite series that should be launched around 2020. In this framework, CNES is studying the concept of a new instrument, the IASI-New Generation (IASI-NG), characterized by an improvement of both spectral and radiometric characteristics as compared to IASI, with three objectives: (i) continuity of the IASI/Metop series; (ii) improvement of vertical resolution; and (iii) improvement of the accuracy and detection threshold for atmospheric and surface components. In this paper, we show that an improvement of spectral resolution and radiometric noise fulfil these objectives by leading to (i) a better vertical coverage in the lower part of the troposphere, thanks to the increase in spectral resolution; and (ii) an increase in the accuracy of the retrieval of several thermodynamic, climate and chemistry variables, thanks to the improved signal-to-noise ratio as well as less interference between the signatures of the absorbing species in the measured radiances. The detection limit of several atmospheric species is also improved. We conclude that IASI-NG has the potential to strongly benefit the numerical weather prediction, chemistry and climate communities now connected through the European GMES/Copernicus initiative.

2013 ◽  
Vol 6 (6) ◽  
pp. 11215-11277 ◽  
Author(s):  
C. Crevoisier ◽  
C. Clerbaux ◽  
V. Guidard ◽  
T. Phulpin ◽  
R. Armante ◽  
...  

Abstract. Besides their strong contribution to weather forecast improvement through data assimilation, thermal infrared sounders onboard polar-orbiting platforms are now playing a key role for monitoring atmospheric composition changes. The Infrared Atmospheric Sounding Interferometer (IASI) instrument developed by the French space agency (CNES) and launched by Eumetsat onboard the Metop satellite series is providing essential inputs for weather forecasting and pollution/climate monitoring owing to its smart combination of large horizontal swath, good spectral resolution and high radiometric performance. EUMETSAT is currently preparing the next polar-orbiting program (EPS-SG) with the Metop-SG satellite series that should be launched around 2020. In this framework, CNES is studying the concept of a new instrument, the IASI-New Generation (IASI-NG), characterized by an improvement of both spectral and radiometric characteristics as compared to IASI, with three objectives: (i) continuity of the IASI/Metop series; (ii) improvement of vertical resolution; (iii) improvement of the accuracy and detection threshold for atmospheric and surface components. In this paper, we show that an improvement of spectral resolution and radiometric noise fulfill these objectives by leading to (i) a better vertical coverage in the lower part of the troposphere, thanks to the increase in spectral resolution; (ii) an increase in the accuracy of the retrieval of several thermodynamic, climate and chemistry variables, thanks to the improved signal-to-noise ratio as well as less interferences between the signatures of the absorbing species in the measured radiances. The detection limit of several atmospheric species is also improved. We conclude that IASI-NG has the potential for strongly benefiting the numerical weather prediction, chemistry and climate communities now connected through the European GMES/Copernicus initiative.


2019 ◽  
Author(s):  
Mikhail Sofiev ◽  
Rostislav Kouznetsov ◽  
Risto Hänninen ◽  
Viktoria F. Sofieva

Abstract. A three-day episode of anomalously low ozone concentrations in the stratosphere over Northern Europe occurred on 3–5 November 2018. A reduction of the total ozone column down to ~ 200–210 Dobson Units was predicted by the global forecasts of System for Integrated modeLling of Atmospheric coMposition (SILAM) driven by the weather forecast of Integrated Forecasting System (IFS) of European Centre for Medium-Range Weather Forecasting (ECMWF). The reduction down to 210–215 DU was subsequently observed by the satellite instruments, such as Ozone Monitoring Instrument (OMI) and Ozone Mapping Profile Suite (OMPS). The episode was caused by intrusion of the tropospheric air, which was initially uplifted by a storm in Northern Atlantic, south-east of Greenland. Subsequent transport towards the east and further uplift over Scandinavian ridge of this humid and low-ozone air brought it to ~ 25 km altitude causing ~ 30 % reduction of the ozone layer thickness over Northern Europe. The low-ozone air was further transported eastwards and diluted over Siberia, so that the ozone concentrations restored a few days later. High accuracy of the episode prediction 5 days in advance by the IFS-SILAM modelling tandem illustrates the model capabilities of short-term forecasting of the stratospheric composition, including such rare events.


2018 ◽  
Vol 11 (2) ◽  
pp. 803-818 ◽  
Author(s):  
Javier Andrey-Andrés ◽  
Nadia Fourrié ◽  
Vincent Guidard ◽  
Raymond Armante ◽  
Pascal Brunel ◽  
...  

Abstract. The highly accurate measurements of the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) are used in numerical weather prediction (NWP), atmospheric chemistry and climate monitoring. As the second generation of the European Polar System (EPS-SG) is being developed, a new generation of IASI instruments has been designed to fly on board the MetOp-SG constellation: IASI New Generation (IASI-NG). In order to prepare the arrival of this new instrument, and to evaluate its impact on NWP and atmospheric chemistry applications, a set of IASI and IASI-NG simulated data was built and made available to the public to set a common framework for future impact studies. This paper describes the information available in this database and the procedure followed to run the IASI and IASI-NG simulations. These simulated data were evaluated by comparing IASI-NG to IASI observations. The result is also presented here. Additionally, preliminary impact studies of the benefit of IASI-NG compared to IASI on the retrieval of temperature and humidity in a NWP framework are also shown in the present work. With a channel dataset located in the same wave numbers for both instruments, we showed an improvement of the temperature retrievals throughout the atmosphere, with a maximum in the troposphere with IASI-NG and a lower benefit for the tropospheric humidity.


2020 ◽  
Author(s):  
Jutta Thielen-del Pozo ◽  
Lise Autogena ◽  
Joshua Portway ◽  
Florian Pappenberger

<p>The European Union is funding research through so-called framework programmes (FPs), the financial and strategic tools to stimulate excellence, innovation, economic growth and creation of jobs across Europe. The allocated research budgets increased considerably from less than 4 billion Euro for FP1 (4 years) to 100 billion for Horizon Europe (FP9, 7 years), demonstrating the strategic importance that is being attributed to research and development for a strong and competitive Europe. The upcoming framework programme Horizon Europe will add a new level of ambition for the scientific, economic as well as societal impact of EU funding and address global challenges that affect the quality of our daily lives.</p><p>However, if societal issues that affect our everyday lives are to be addressed effectively in research and to drive the necessary innovation process in view of a better future, then the third component at the science-policy interface must be “society”. Robust data, facts and evidences represent an important input to policy making in addition to other inputs and considerations. Scientists and policy makers must therefore not only network amongst their communities and experts but also interact with the public and engage in dialogue with citizens in order to first understand what the concerns and issues are and later to explain the solutions.</p><p>The Joint Research Centre has engaged in an Art, Science and Society programme to fill this gap. Artists are invited to the JRC to co-develop projects with the scientists under a specific theme – in 2015 the topic was “Food”, in 2017 “Fairness” and in 2019 “Big Data, Digital Transformation and Artificial Intelligence”. The final works are exhibited during the so-called Resonances Festival.</p><p>This presentation illustrates at the example of the Resonances III installation “Weather Prediction by Numerical Process - a forecast for Europe” by artists Lise Autogena and Joshua Portway in collaboration with the co-authors, the added value of this approach. The installation is a performance inspired by the work of L.F. Richardson (1881–1953), a truly multi-disciplinary scientist, who contributed to finite difference solutions of partial differential equations, turbulent flow and diffusion, also fractals, and the cause and evolution of conflicts. He was particularly visionary in his work on designing a numerical scheme for weather forecasting. While serving as ambulance driver during WWI, he performed the calculation for a weather forecast for Europe “by hand”. Even if the result of his years of calculations resulted in a wrong forecast because the numerical solution was not stable, the methodology for numerical weather forecast was born and today’s weather forecasts follow largely the same method – just with infinite more computing power. Richardson estimated that 64000 scientists, working together in a big orchestrated calculation, would be needed to calculate the weather in real-time.</p><p>The chosen format for the art installation is a performance, ritualistically re-enacting a small part of this epic calculation, drawing the audience into a multi-faceted discussion on the relevance of Richardson’s legacy today in the times of super computing and climate change.</p>


2017 ◽  
Author(s):  
Javier Andrey-Andrés ◽  
Nadia Fourrié ◽  
Vincent Guidard ◽  
Raymond Armante ◽  
Pascal Brunel ◽  
...  

Abstract. The highly accurate measurements of the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) are used in Numerical Weather Prediction (NWP), atmospheric chemistry and climate monitoring. As the second generation of the European Polar System (EPS-SG) is being developed, a new generation of IASI instruments has been designed to fly on board the MetOp-SG constellation: IASI New Generation (IASI-NG). In order to prepare the arrival of this new instrument, and to evaluate its impact on NWP and atmospheric chemistry applications, a set of IASI and IASI-NG simulated data was built and made available to the public to set a common framework for future impact studies. This paper describes the information available in this database and the procedure followed to run the IASI and IASI-NG simulations. These simulated data were evaluated by comparing IASI-NG to IASI observations. The result is also presented here. Additionally, preliminary impact studies of the benefit of IASI-NG compared to IASI on the retrieval of temperature and humidity in a NWP framework are also shown in the present work. With a channel dataset located in the same wave numbers for both instruments, we showed an improvement of the temperature retrievals along all the atmosphere with a maximum in the troposphere with IASI-NG and a lower benefit for the tropospheric humidity.


Author(s):  
Douglas J Parker ◽  
Alan M Blyth ◽  
Steven J. Woolnough ◽  
Andrew J. Dougill ◽  
Caroline L. Bain ◽  
...  

AbstractAfrica is poised for a revolution in the quality and relevance of weather predictions, with potential for great benefits in terms of human and economic security. This revolution will be driven by recent international progress in nowcasting, numerical weather prediction, theoretical tropical dynamics and forecast communication, but will depend on suitable scientific investment being made. The commercial sector has recognized this opportunity and new forecast products are being made available to African stakeholders. At this time, it is vital that robust scientific methods are used to develop and evaluate the new generation of forecasts. The GCRF African SWIFT project represents an international effort to advance scientific solutions across the fields of nowcasting, synoptic and short-range severe weather prediction, subseasonal-to-seasonal (S2S) prediction, user engagement and forecast evaluation. This paper describes the opportunities facing African meteorology and the ways in which SWIFT is meeting those opportunities and identifying priority next steps.Delivery and maintenance of weather forecasting systems exploiting these new solutions requires a trained body of scientists with skills in research and training; modelling and operational prediction; communications and leadership. By supporting partnerships between academia and operational agencies in four African partner countries, the SWIFT project is helping to build capacity and capability in African forecasting science. A highlight of SWIFT is the coordination of three weather-forecasting “Testbeds” – the first of their kind in Africa – which have been used to bring new evaluation tools, research insights, user perspectives and communications pathways into a semi-operational forecasting environment.


2017 ◽  
Vol 10 (8) ◽  
pp. 2971-2999 ◽  
Author(s):  
Alexander Baklanov ◽  
Ulrik Smith Korsholm ◽  
Roman Nuterman ◽  
Alexander Mahura ◽  
Kristian Pagh Nielsen ◽  
...  

Abstract. The Environment – High Resolution Limited Area Model (Enviro-HIRLAM) is developed as a fully online integrated numerical weather prediction (NWP) and atmospheric chemical transport (ACT) model for research and forecasting of joint meteorological, chemical and biological weather. The integrated modelling system is developed by the Danish Meteorological Institute (DMI) in collaboration with several European universities. It is the baseline system in the HIRLAM Chemical Branch and used in several countries and different applications. The development was initiated at DMI more than 15 years ago. The model is based on the HIRLAM NWP model with online integrated pollutant transport and dispersion, chemistry, aerosol dynamics, deposition and atmospheric composition feedbacks. To make the model suitable for chemical weather forecasting in urban areas, the meteorological part was improved by implementation of urban parameterisations. The dynamical core was improved by implementing a locally mass-conserving semi-Lagrangian numerical advection scheme, which improves forecast accuracy and model performance. The current version (7.2), in comparison with previous versions, has a more advanced and cost-efficient chemistry, aerosol multi-compound approach, aerosol feedbacks (direct and semi-direct) on radiation and (first and second indirect effects) on cloud microphysics. Since 2004, the Enviro-HIRLAM has been used for different studies, including operational pollen forecasting for Denmark since 2009 and operational forecasting atmospheric composition with downscaling for China since 2017. Following the main research and development strategy, further model developments will be extended towards the new NWP platform – HARMONIE. Different aspects of online coupling methodology, research strategy and possible applications of the modelling system, and fit-for-purpose model configurations for the meteorological and air quality communities are discussed.


2018 ◽  
Vol 99 (10) ◽  
pp. 2025-2043 ◽  
Author(s):  
Lans P. Rothfusz ◽  
Russell Schneider ◽  
David Novak ◽  
Kimberly Klockow-McClain ◽  
Alan E. Gerard ◽  
...  

AbstractRecommendations by the National Research Council (NRC), the National Institute of Standards and Technology (NIST), and Weather-Ready Nation workshop participants have encouraged the National Oceanic and Atmospheric Administration (NOAA) and the broader weather enterprise to explore and expand the use of probabilistic information to convey weather forecast uncertainty. Forecasting a Continuum of Environmental Threats (FACETs) is a concept being explored by NOAA to address those recommendations and also potentially shift the National Weather Service (NWS) from (primarily) teletype-era, deterministic watch–warning products to high-resolution, probabilistic hazard information (PHI) spanning periods from days (and longer) to within minutes of high-impact weather and water events. FACETs simultaneously i) considers a reinvention of the NWS hazard forecasting and communication paradigm so as to deliver multiscale, user-specific probabilistic guidance from numerical weather prediction ensembles and ii) provides a comprehensive framework to organize the physical, social, and behavioral sciences, the technology, and the practices needed to achieve that reinvention. The first applications of FACETs have focused on thunderstorm phenomena, but the FACETs concept is envisioned to extend to the attributes of any environmental hazards that can be described probabilistically (e.g., winter, tropical, and aviation weather). This paper introduces the FACETs vision, the motivation for its creation, the research and development under way to explore that vision, its relevance to operational forecasting and society, and possible strategies for implementation.


2021 ◽  
Author(s):  
Pierre Dussarrat ◽  
Bertrand Theodore ◽  
Dorothee Coppens ◽  
Carsten Standfuss ◽  
Bernard Tournier

Abstract. Atmospheric remote spectrometry from space has become in the last 20 years a key component of the Earth monitoring system: their large coverage and deci-kelvin stability have demonstrated their usefulness for weather prediction, atmospheric composition monitoring as well as climate monitoring. It is thus critical to investigate the possible sources of errors associated to this technique. One of them is the so-called "ringing error" that appears in Fourier transform spectrometers when the instrument transmission varies at the scale of the spectral resolution. This paper exposes the theoretical basis of this particular type of radiometric uncertainty. Its sensitivity to instrumental parameters as well as the impact on the radiometrically calibrated measurements is assessed in the context of atmospheric infrared sounding using Fourier transform spectrometers. It is shown that this error is an intrinsic feature of such instruments that could safely be ignored in early-generation instruments but will have to be taken into account in the new generation ones as it can yield a significant degradation of the radiometric error budget.


2020 ◽  
Author(s):  
Isabell Krisch ◽  
Michael Rennie ◽  
Bernd Kaifler ◽  
Sonja Gisinger ◽  
Oliver Reitebuch ◽  
...  

<p>In January 2020, the European Centre for Medium-Range Weather Forecast (ECMWF) became the first numerical weather prediction (NWP) centre to assimilate wind observations from the new European Space Agency (ESA)’s Earth Explorer satellite Aeolus for operational forecasting. Aeolus was launched into space on August 22<sup>nd</sup>, 2018, carrying the world’s first spaceborne wind lidar, the Atmospheric Laser Doppler Instrument (ALADIN). ALADIN measures profiles of line-of-sight wind components from 30km altitude down to the Earth’s surface or to the level where the lidar signal is attenuated by optically thick clouds.</p><p>Impact assessment studies performed at ECMWF in 2019, show improved weather forecasting skills, by assimilating Aeolus wind measurements. As a side effect, these impact experiments also reveal an influence of Aeolus data assimilation on the representation of resolved gravity waves in the ECMWF model fields. Both, orographic and non-orographic gravity waves are impacted by the Aeolus data assimilation.</p><p>This impact of Aeolus data assimilation on the representation of gravity waves in ECMWF will be presented for selected case studies in the southern hemisphere. Ground-based and airborne measurement data from the SOUTHTRAC campaign will be used for validation where available.</p>


Sign in / Sign up

Export Citation Format

Share Document