scholarly journals Measurements of hydrogen cyanide (HCN) and acetylene (C<sub>2</sub>H<sub>2</sub>) from the Infrared Atmospheric Sounding Interferometer (IASI)

2012 ◽  
Vol 5 (5) ◽  
pp. 7567-7586
Author(s):  
V. Duflot ◽  
D. Hurtmans ◽  
L. Clarisse ◽  
Y. R'honi ◽  
C. Vigouroux ◽  
...  

Abstract. Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q-branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S; 55° E) and Jungfraujoch (46° N; 8° E) in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI). These are compared with local ground-based Fourier Transform InfraRed (FTIR) measurements and we demonstrate that the seasonality is well captured, except for HCN at Jungfraujoch. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values.

2013 ◽  
Vol 6 (4) ◽  
pp. 917-925 ◽  
Author(s):  
V. Duflot ◽  
D. Hurtmans ◽  
L. Clarisse ◽  
Y. R'honi ◽  
C. Vigouroux ◽  
...  

Abstract. Hydrogen cyanide (HCN) and acetylene (C2H2) are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing, we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S, 55° E) and Jungfraujoch (46° N, 8° E) in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI). A first order comparison with local ground-based Fourier transform infraRed (FTIR) measurements has been carried out allowing tests of seasonal consistency which is reasonably captured, except for HCN at Jungfraujoch. The IASI data shows a greater tendency to high C2H2 values. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values.


2014 ◽  
Vol 56 ◽  
Author(s):  
Shaomin Cai ◽  
Anu Dudhia

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument which operated on the Envisat satellite from 2002-2012 is a Fourier transform spectrometer for the measurement of high-resolution gaseous emission spectra at the Earth's limb. It operates in the near- to mid-infrared, where many of the main atmospheric trace gases have important emission features. The initial operational products were profiles of Temperature, H2O, O3, CH4, N2O, HNO3, and NO2, and this list was recently extended to include N2O5, ClONO2, CFC-11 and CFC-12. Here we present preliminary results of retrievals of the third set of species under consideration for inclusion in the operational processor: HCN, CF4, HCFC-22, COF2 and CCl4.


2014 ◽  
Vol 14 (18) ◽  
pp. 9727-9754 ◽  
Author(s):  
C. E. Stockwell ◽  
R. J. Yokelson ◽  
S. M. Kreidenweis ◽  
A. L. Robinson ◽  
P. J. DeMott ◽  
...  

Abstract. During the fourth Fire Lab at Missoula Experiment (FLAME-4, October–November 2012) a large variety of regionally and globally significant biomass fuels was burned at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particle emissions were characterized by an extensive suite of instrumentation that measured aerosol chemistry, size distribution, optical properties, and cloud-nucleating properties. The trace gas measurements included high-resolution mass spectrometry, one- and two-dimensional gas chromatography, and open-path Fourier transform infrared (OP-FTIR) spectroscopy. This paper summarizes the overall experimental design for FLAME-4 – including the fuel properties, the nature of the burn simulations, and the instrumentation employed – and then focuses on the OP-FTIR results. The OP-FTIR was used to measure the initial emissions of 20 trace gases: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. These species include most of the major trace gases emitted by biomass burning, and for several of these compounds, this is the first time their emissions are reported for important fuel types. The main fire types included African grasses, Asian rice straw, cooking fires (open (three-stone), rocket, and gasifier stoves), Indonesian and extratropical peat, temperate and boreal coniferous canopy fuels, US crop residue, shredded tires, and trash. Comparisons of the OP-FTIR emission factors (EFs) and emission ratios (ERs) to field measurements of biomass burning verify that the large body of FLAME-4 results can be used to enhance the understanding of global biomass burning and its representation in atmospheric chemistry models. Crop residue fires are widespread globally and account for the most burned area in the US, but their emissions were previously poorly characterized. Extensive results are presented for burning rice and wheat straw: two major global crop residues. Burning alfalfa produced the highest average NH3 EF observed in the study (6.63 ± 2.47 g kg−1), while sugar cane fires produced the highest EF for glycolaldehyde (6.92 g kg−1) and other reactive oxygenated organic gases such as HCHO, HCOOH, and CH3COOH. Due to the high sulfur and nitrogen content of tires, they produced the highest average SO2 emissions (26.2 ± 2.2 g kg−1) and high NOx and HONO emissions. High variability was observed for peat fire emissions, but they were consistently characterized by large EFs for NH3 (1.82 ± 0.60 g kg−1) and CH4 (10.8 ± 5.6 g kg−1). The variability observed in peat fire emissions, the fact that only one peat fire had previously been subject to detailed emissions characterization, and the abundant emissions from tropical peatlands all impart high value to our detailed measurements of the emissions from burning three Indonesian peat samples. This study also provides the first EFs for HONO and NO2 for Indonesian peat fires. Open cooking fire emissions of HONO and HCN are reported for the first time, and the first emissions data for HCN, NO, NO2, HONO, glycolaldehyde, furan, and SO2 are reported for "rocket" stoves: a common type of improved cookstove. The HCN / CO emission ratios for cooking fires (1.72 × 10−3 ± 4.08 × 10−4) and peat fires (1.45 × 10−2 ± 5.47 × 10−3) are well below and above the typical values for other types of biomass burning, respectively. This would affect the use of HCN / CO observations for source apportionment in some regions. Biomass burning EFs for HCl are rare and are reported for the first time for burning African savanna grasses. High emissions of HCl were also produced by burning many crop residues and two grasses from coastal ecosystems. HCl could be the main chlorine-containing gas in very fresh smoke, but rapid partitioning to aerosol followed by slower outgassing probably occurs.


2020 ◽  
Vol 20 (21) ◽  
pp. 12813-12851
Author(s):  
Erik Lutsch ◽  
Kimberly Strong ◽  
Dylan B. A. Jones ◽  
Thomas Blumenstock ◽  
Stephanie Conway ◽  
...  

Abstract. We present a multiyear time series of column abundances of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) measured using Fourier-transform infrared (FTIR) spectrometers at 10 sites affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC). Six are high-latitude sites: Eureka, Ny-Ålesund, Thule, Kiruna, Poker Flat, and St. Petersburg, and four are midlatitude sites: Zugspitze, Jungfraujoch, Toronto, and Rikubetsu. For each site, the interannual trends and seasonal variabilities of the CO time series are accounted for, allowing background column amounts to be determined. Enhancements above the seasonal background were used to identify possible wildfire pollution events. Since the abundance of each trace gas emitted in a wildfire event is specific to the type of vegetation burned and the burning phase, correlations of CO to the long-lived wildfire tracers HCN and C2H6 allow for further confirmation of the detection of wildfire pollution. A GEOS-Chem tagged CO simulation with Global Fire Assimilation System (GFASv1.2) biomass burning emissions was used to determine the source attribution of CO concentrations at each site from 2003 to 2018. For each detected wildfire pollution event, FLEXPART back-trajectory simulations were performed to determine the transport times of the smoke plume. Accounting for the loss of each species during transport, the enhancement ratios of HCN and C2H6 with respect to CO were converted to emission ratios. We report mean emission ratios with respect to CO for HCN and C2H6 of 0.0047 and 0.0092, respectively, with a standard deviation of 0.0014 and 0.0046, respectively, determined from 23 boreal North American wildfire events. Similarly, we report mean emission ratios for HCN and C2H6 of 0.0049 and 0.0100, respectively, with a standard deviation of 0.0025 and 0.0042, respectively, determined from 39 boreal Asian wildfire events. The agreement of our emission ratios with literature values illustrates the capability of ground-based FTIR measurements to quantify biomass burning emissions. We provide a comprehensive dataset that quantifies HCN and C2H6 emission ratios from 62 wildfire pollution events. Our dataset provides novel emission ratio estimates, which are sparsely available in the published literature, particularly for boreal Asian sources.


2016 ◽  
Author(s):  
Robert J. Parker ◽  
Hartmut Boesch ◽  
Martin J. Wooster ◽  
David P. Moore ◽  
Alex J. Webb ◽  
...  

Abstract. The 2015–2016 strong El Niño event has had a dramatic impact on the amount of Indonesian biomass burning, with the El Niño driven drought further desiccating the already drier than normal landscapes that are the result of decades of peatland draining, widespread deforestation, anthropogenically-driven forest degradation, and previous large fire events. It is expected that the 2015–16 Indonesian fires will have emitted globally significant quantities of greenhouse gases (GHGs) to the atmosphere, as did previous El Niño driven fires in the region. The form which the carbon released from the combustion of the vegetation and peat soils takes has a strong bearing on its atmospheric chemistry and climatological impacts. Typically, burning in tropical forests and especially in peatlands is expected to involve a much higher proportion of smouldering combustion than the more flaming-characterised fires that occur in fine-fuel dominated environments such as grasslands, consequently producing significantly more CH4 (and CO) per unit of fuel burned. However, currently there have been no aircraft campaigns sampling Indonesian fire plumes, and very few ground-based field campaigns (none during El Niño), so our understanding of the large-scale chemical composition of these extremely significant fire plumes is surprisingly poor compared to, for example, those of southern Africa or the Amazon. Here, for the first time, we use satellite observations of CH4 and CO2 from the Greenhouse gases Observing SATellite (GOSAT) made in large scale plumes from the 2015 El Niño-driven Indonesian fires to probe aspects of their chemical composition. We demonstrate significant modifications in the concentration of these species in the regional atmosphere around Indonesia, due to the fire emissions. Using CO and fire radiative power (FRP) data from the Copernicus Atmosphere Service, we identify fire-affected GOSAT soundings and show that peaks in fire activity are followed by subsequent large increases in regional greenhouse gas concentrations. CH4 is particularly enhanced, due to the dominance of smouldering combustion in peatland fires, with CH4 total column values typically exceeding 35 ppb above that of background "clean air" soundings. By examining the CH4 and CO2 excess concentrations in the fire-affected GOSAT observations, we determine the CH4/CO2 fire emission ratio for the entire 2-month period of the most extreme burning (September–October 2015), and also for individual shorter periods where the fire activity temporarily peaks. We demonstrate that the overall CH4 to CO2 emission ratio (ER) for fires occurring in Indonesia over this time is 6.2 ppb/ppm. This is higher than that found over both the Amazon (5.1 ppb/ppm) and southern Africa (4.4 ppb/ppm), consistent with the Indonesian fires being characterised by an increased amount of smouldering combustion due to the large amount of organic soil (peat) burning involved. We find the range of our satellite-derived Indonesian ERs (6.18 ppb/ppm to 13.6 ppb/ppm) to be relatively closely matched to that of a series of "close-to-source" ground-based sampling measurements made on Kalimantan at the height of the fire event (7.53 to 19.67 ppb/ppm), although typically the satellite-derived quantities are slightly lower on average. This seems likely to be because our field sampling mostly intersected smaller-scale peat burning plumes, whereas the large-scale plumes intersected by the GOSAT TANSO-FTS footprints would very likely come from burning that was occurring in a mixture of fuels that included peat, tropical forest and already cleared areas of forest characterised by vegetation types that are more fire-prone than the natural rainforest biome (e.g. post-fire areas of ferns and scrubland, along with agricultural vegetation). The ability to determine large-scale emission ratios from satellite data allows the combustion behaviour of very large regions of burning to be characterised and understood in a way not possible with ground-based studies, and which can be logistically difficult and very costly to consider using aircraft observations. We therefore believe the method demonstrated here provides a further important tool for characterising biomass burning emissions, and that the GHG emission ratios derived for the first time for these large-scale Indonesian fire plumes during an El Niño event, points the way to more routinely assessing spatio-temporal variations in biomass burning emission ratios using future satellite missions that will have more complete spatial sampling than GOSAT, and that will enable the contributions of these fires to the regional atmospheric chemistry and climate to be better understood.


2015 ◽  
Vol 15 (18) ◽  
pp. 10509-10527 ◽  
Author(s):  
V. Duflot ◽  
C. Wespes ◽  
L. Clarisse ◽  
D. Hurtmans ◽  
Y. Ngadi ◽  
...  

Abstract. We present global distributions of C2H2 and hydrogen cyanide (HCN) total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI) for the years 2008–2010. These distributions are obtained with a fast method allowing to retrieve C2H2 abundance globally with a 5 % precision and HCN abundance in the tropical (subtropical) belt with a 10 % (25 %) precision. IASI data are compared for validation purposes with ground-based Fourier transform infrared (FTIR) spectrometer measurements at four selected stations. We show that there is an overall agreement between the ground-based and space measurements with correlation coefficients for daily mean measurements ranging from 0.28 to 0.81, depending on the site. Global C2H2 and subtropical HCN abundances retrieved from IASI spectra show the expected seasonality linked to variations in the anthropogenic emissions and seasonal biomass burning activity, as well as exceptional events, and are in good agreement with previous spaceborne studies. Total columns simulated by the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) are compared to the ground-based FTIR measurements at the four selected stations. The model is able to capture the seasonality in the two species in most of the cases, with correlation coefficients for daily mean measurements ranging from 0.50 to 0.86, depending on the site. IASI measurements are also compared to the distributions from MOZART-4. Seasonal cycles observed from satellite data are reasonably well reproduced by the model with correlation coefficients ranging from −0.31 to 0.93 for C2H2 daily means, and from 0.09 to 0.86 for HCN daily means, depending on the considered region. However, the anthropogenic (biomass burning) emissions used in the model seem to be overestimated (underestimated), and a negative global mean bias of 1 % (16 %) of the model relative to the satellite observations was found for C2H2 (HCN).


2014 ◽  
Vol 14 (4) ◽  
pp. 4327-4381 ◽  
Author(s):  
C. Paton-Walsh ◽  
T. E. L. Smith ◽  
E. L. Young ◽  
D. W. T. Griffith ◽  
É.-A. Guérette

Abstract. Biomass burning releases trace gases and aerosol particles that significantly affect the composition and chemistry of the atmosphere. Australia contributes approximately 8% of gross global carbon emissions from biomass burning, yet there are few previous measurements of emissions from Australian forest fires available in the literature. This paper describes the results of field measurements of trace gases emitted during hazard reduction burns in Australian temperate forests using open-path Fourier transform infrared spectroscopy. In a companion paper, similar techniques are used to characterise the emissions from hazard reduction burns in the savanna regions of the Northern Territory. Details of the experimental methods are explained, including both the measurement set-up and the analysis techniques employed. The advantages and disadvantages of different ways to estimate whole-fire emission factors are discussed and a measurement uncertainty budget is developed.


2014 ◽  
Vol 14 (20) ◽  
pp. 11313-11333 ◽  
Author(s):  
C. Paton-Walsh ◽  
T. E. L. Smith ◽  
E. L. Young ◽  
D. W. T. Griffith ◽  
É.-A. Guérette

Abstract. Biomass burning releases trace gases and aerosol particles that significantly affect the composition and chemistry of the atmosphere. Australia contributes approximately 8% of gross global carbon emissions from biomass burning, yet there are few previous measurements of emissions from Australian forest fires available in the literature. This paper describes the results of field measurements of trace gases emitted during hazard reduction burns in Australian temperate forests using open-path Fourier transform infrared spectroscopy. In a companion paper, similar techniques are used to characterise the emissions from hazard reduction burns in the savanna regions of the Northern Territory. Details of the experimental methods are explained, including both the measurement set-up and the analysis techniques employed. The advantages and disadvantages of different ways to estimate whole-fire emission factors are discussed and a measurement uncertainty budget is developed. Emission factors for Australian temperate forest fires are measured locally for the first time for many trace gases. Where ecosystem-relevant data are required, we recommend the following emission factors for Australian temperate forest fires (in grams of gas emitted per kilogram of dry fuel burned) which are our mean measured values: 1620 ± 160 g kg−1 of carbon dioxide; 120 ± 20 g kg−1 of carbon monoxide; 3.6 ± 1.1 g kg−1 of methane; 1.3 ± 0.3 g kg−1 of ethylene; 1.7 ± 0.4 g kg−1 of formaldehyde; 2.4 ± 1.2 g kg−1 of methanol; 3.8 ± 1.3 g kg−1 of acetic acid; 0.4 ± 0.2 g kg−1 of formic acid; 1.6 ± 0.6 g kg−1 of ammonia; 0.15 ± 0.09 g kg−1 of nitrous oxide and 0.5 ± 0.2 g kg−1 of ethane.


1985 ◽  
Vol 50 (11) ◽  
pp. 2480-2492 ◽  
Author(s):  
Soňa Přádná ◽  
Dušan Papoušek ◽  
Jyrki Kauppinen ◽  
Sergei P. Belov ◽  
Andrei F. Krupnov ◽  
...  

Fourier transform spectra of the ν2 band of PH3 have been remeasured with 0.0045 cm-1 resolution. Ground state combination differences from these data have been fitted simultaneously with the microwave and submillimeterwave data to determine the ground state spectroscopical parameters of PH3 including the parameters of the Δk = ± 3n interactions. The correlation between the latter parameters has been discussed from the point of view of the existence of two equivalent effective rotational operators which are related by a unitary transformation. The ΔJ = 0, +1, ΔK = 0 (A1 ↔ A2, E ↔ E) rotational transitions in the ν2 and ν4 states have been measured for the first time by using a microwave spectrometer and a radiofrequency spectrometer with acoustic detection.


Sign in / Sign up

Export Citation Format

Share Document