scholarly journals Trajectory matching of ozonesondes and MOZAIC measurements in the UTLS – Part 1: Method description and application at Payerne, Switzerland

2013 ◽  
Vol 6 (4) ◽  
pp. 7063-7098 ◽  
Author(s):  
J. Staufer ◽  
J. Staehelin ◽  
R. Stübi ◽  
T. Peter ◽  
F. Tummon ◽  
...  

Abstract. With the aim of improving ozonesonde observations in the upper troposphere/lower stratosphere (UTLS), we use three-dimensional forward and backward trajectories, driven by ERA-Interim wind fields to match and compare ozonesonde measurements at Payerne (Switzerland) with observations from the MOZAIC aircraft program from 1994–2009. The uncertainties associated with the sonde–MOZAIC match technique were assessed using "self-matches", i.e. matches of instruments of the same type, such as MOZAIC–MOZAIC. Despite strong vertical ozone gradients of ozone at the tropopause, which render the match approach difficult, the method provides excellent results, showing mean differences between different MOZAIC aircraft of ±2% (typically with a few hours between the up- and downstream match points). Matches between MOZAIC aircraft and Payerne ozonesondes show an agreement of ±5% for sondes equipped with electrochemical concentration cells (ECC) and between <5% (not scaled to total ozone) and <10% (scaled) for the Brewer–Mast (BM) sondes after 1998. Prior to 1998, BM sondes show an offset of around 20% (scaled). No break can be identified through the change from the BM to ECC sonde types in September 2002. A comparison of BM sondes with ozone measurements from the NOXAR B747 project for the period 1995–1996 show a smaller offset of around 15% (scaled), which may indicate a small drift in the MOZAIC calibration.

2013 ◽  
Vol 6 (12) ◽  
pp. 3393-3406 ◽  
Author(s):  
J. Staufer ◽  
J. Staehelin ◽  
R. Stübi ◽  
T. Peter ◽  
F. Tummon ◽  
...  

Abstract. With the aim of improving ozonesonde observations in the upper troposphere/lower stratosphere (UTLS), we use three-dimensional forward and backward trajectories, driven by ERA-Interim wind fields to match and compare ozonesonde measurements at Payerne (Switzerland) with observations from the MOZAIC aircraft program from 1994–2009. The uncertainties associated with the sonde–MOZAIC match technique were assessed using "self-matches", i.e. matches of instruments of the same type, such as MOZAIC–MOZAIC. Despite strong vertical gradients of ozone at the tropopause, which render the match approach difficult, the method provides excellent results, showing mean differences between different MOZAIC aircraft of ±2% (typically with a few hours between the up- and downstream match points). Matches between MOZAIC aircraft and Payerne ozonesondes show an agreement of ±5% for sondes equipped with electrochemical concentration cells (ECC) and between < 5% (not scaled to total ozone) and < 10% (scaled) for the Brewer–Mast (BM) sondes after 1998. Prior to 1998, BM sondes show an offset of around 20% (scaled). No break can be identified through the change from the BM to ECC sonde types in September 2002. A comparison of BM sondes with ozone measurements from the NOXAR B747 project for the period 1995–1996 show a smaller offset of around 15% (scaled), which may indicate a small drift in the MOZAIC calibration.


2009 ◽  
Vol 9 (5) ◽  
pp. 18511-18543 ◽  
Author(s):  
J. Aschmann ◽  
B. M. Sinnhuber ◽  
E. L. Atlas ◽  
S. M. Schauffler

Abstract. The transport of very short-lived substances into the tropical upper troposphere and lower stratosphere is investigated by a three-dimensional chemical transport model using archived convective updraft mass fluxes (or detrainment rates) from the European Centre for Medium-Range Weather Forecast's ERA-Interim reanalysis. Large-scale vertical velocities are calculated from diabatic heating rates. With this approach we explicitly model the large scale subsidence in the tropical troposphere with convection taking place in fast and isolated updraft events. The model calculations agree generally well with observations of bromoform and methyl iodide from aircraft campaigns and with ozone and water vapor from sonde and satellite observations. Using a simplified treatment of dehydration and bromine product gas washout we give a range of 1.6 to 3 ppt for the contribution of bromoform to stratospheric bromine, assuming a uniform source in the boundary layer of 1 ppt. We show that the most effective region for VSLS transport into the stratosphere is the West Pacific, accounting for about 55% of the bromine from bromoform transported into the stratosphere under the supposition of a uniformly distributed source.


2015 ◽  
Vol 8 (1) ◽  
pp. 81-95 ◽  
Author(s):  
M. Kaufmann ◽  
J. Blank ◽  
T. Guggenmoser ◽  
J. Ungermann ◽  
A. Engel ◽  
...  

Abstract. The three-dimensional quantification of small-scale processes in the upper troposphere and lower stratosphere is one of the challenges of current atmospheric research and requires the development of new measurement strategies. This work presents the first results from the newly developed Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) obtained during the ESSenCe (ESa Sounder Campaign) and TACTS/ESMVal (TACTS: Transport and composition in the upper troposphere/lowermost stratosphere, ESMVal: Earth System Model Validation) aircraft campaigns. The focus of this work is on the so-called dynamics-mode data characterized by a medium-spectral and a very-high-spatial resolution. The retrieval strategy for the derivation of two- and three-dimensional constituent fields in the upper troposphere and lower stratosphere is presented. Uncertainties of the main retrieval targets (temperature, O3, HNO3, and CFC-12) and their spatial resolution are discussed. During ESSenCe, high-resolution two-dimensional cross-sections have been obtained. Comparisons to collocated remote-sensing and in situ data indicate a good agreement between the data sets. During TACTS/ESMVal, a tomographic flight pattern to sense an intrusion of stratospheric air deep into the troposphere was performed. It was possible to reconstruct this filament at an unprecedented spatial resolution of better than 500 m vertically and 20 × 20 km horizontally.


2014 ◽  
Vol 14 (5) ◽  
pp. 5991-6025
Author(s):  
T. Wang ◽  
W. J. Randel ◽  
A. E. Dessler ◽  
M. R. Schoeberl ◽  
D. E. Kinnison

Abstract. A domain-filling, forward trajectory model originally developed for simulating stratospheric water vapor is used to simulate ozone (O3) and carbon monoxide (CO) in the upper troposphere and lower stratosphere (UTLS). Trajectories are initialized in the upper troposphere, and the circulation is based on reanalysis wind fields. In addition, chemical production and loss rates along trajectories are included using calculations from the Whole Atmosphere Community Climate Model (WACCM). The trajectory model results show good overall agreement with satellite observations from the Aura Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) in terms of spatial structure and seasonal variability. The trajectory model results also agree well with the Eulerian WACCM simulations. Analysis of the simulated tracers shows that seasonal variations in tropical upwelling exerts strong influence on O3 and CO in the tropical lower stratosphere, and the coupled seasonal cycles provide a useful test of the transport simulations. Interannual variations in the tracers are also closely coupled to changes in upwelling, and the trajectory model can accurately capture and explain observed changes during 2005–2011. This demonstrates the importance of variability in tropical upwelling in forcing chemical changes in the tropical UTLS.


2014 ◽  
Vol 7 (4) ◽  
pp. 4229-4274 ◽  
Author(s):  
M. Kaufmann ◽  
J. Blank ◽  
T. Guggenmoser ◽  
J. Ungermann ◽  
A. Engel ◽  
...  

Abstract. The three-dimensional quantification of small scale processes in the upper troposphere and lower stratosphere is one of the challenges of current atmospheric research and requires the development of new measurement strategies. This work presents first results from the newly developed Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) obtained during the ESSenCe and TACTS/ESMVal aircraft campaigns. The focus of this work is on the so-called dynamics mode data characterized by a medium spectral and a very high spatial resolution. The retrieval strategy for the derivation of two- and three-dimensional constituent fields in the upper troposphere and lower stratosphere is presented. Uncertainties of the main retrieval targets (temperature, O3, HNO3 and CFC-12) and their spatial resolution are discussed. During ESSenCe, high resolution two-dimensional cross-sections have been obtained. Comparisons to collocated remote-sensing and in-situ data indicate a good agreement between the data sets. During TACTS/ESMVal a tomographic flight pattern to sense an intrusion of stratospheric air deep into the troposphere has been performed. This filament could be reconstructed with an unprecedented spatial resolution of better than 500 m vertically and 20 km × 20 km horizontally.


2014 ◽  
Vol 7 (2) ◽  
pp. 1535-1572 ◽  
Author(s):  
M. Riese ◽  
H. Oelhaf ◽  
P. Preusse ◽  
J. Blank ◽  
M. Ern ◽  
...  

Abstract. The upper troposphere/lower stratosphere (UTLS) plays a crucial role in the climate system. Changes in the composition and dynamic structure of this atmospheric region result in particularly large changes in the atmospheric radiation balance. Quantifying the physical and chemical processes that control UTLS composition therefore represents an important task. Currently, there is a lack of UTLS observations with sufficient three-dimensional resolution. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) aircraft instrument addresses this observational lack by providing observations of numerous trace constituents as well as temperature and cloud structures with an unprecedented combination of vertical resolution (up to 300 m) and horizontal resolution (up to 20 km × 20 km). As a result, important scientific questions concerning stratosphere–troposphere-exchange, the occurrence of subvisible cirrus clouds in the lowermost stratosphere (LMS), polar chemistry and gravity wave processes can be addressed, as reviewed in this paper.


2014 ◽  
Vol 14 (14) ◽  
pp. 7135-7147 ◽  
Author(s):  
T. Wang ◽  
W. J. Randel ◽  
A. E. Dessler ◽  
M. R. Schoeberl ◽  
D. E. Kinnison

Abstract. A domain-filling, forward trajectory model originally developed for simulating stratospheric water vapor is used to simulate ozone (O3) and carbon monoxide (CO) in the lower stratosphere. Trajectories are initialized in the upper troposphere, and the circulation is based on reanalysis wind fields. In addition, chemical production and loss rates along trajectories are included using calculations from the Whole Atmosphere Community Climate Model (WACCM). The trajectory model results show good overall agreement with satellite observations from the Aura Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) in terms of spatial structure and seasonal variability. The trajectory model results also agree well with the Eulerian WACCM simulations. Analysis of the simulated tracers shows that seasonal variations in tropical upwelling exerts strong influence on O3 and CO in the tropical lower stratosphere, and the coupled seasonal cycles provide a useful test of the transport simulations. Interannual variations in the tracers are also closely coupled to changes in upwelling, and the trajectory model can accurately capture and explain observed changes during 2005–2011. This demonstrates the importance of variability in tropical upwelling in forcing chemical changes in the tropical lower stratosphere.


2011 ◽  
Vol 11 (17) ◽  
pp. 9303-9322 ◽  
Author(s):  
J. M. English ◽  
O. B. Toon ◽  
M. J. Mills ◽  
F. Yu

Abstract. Using a three-dimensional general circulation model with sulfur chemistry and sectional aerosol microphysics (WACCM/CARMA), we studied aerosol formation and microphysics in the upper troposphere and lower stratosphere (UTLS) as well as the middle and upper stratosphere based on three nucleation schemes (two binary homogeneous schemes and an ion-mediated scheme related to one of the binary schemes). Simulations suggest that ion-mediated nucleation rates in the UTLS are 25 % higher than its related binary scheme, but that the rates predicted by the two binary schemes vary by two orders of magnitude. None of the nucleation schemes is superior at matching the limited observations available at the smallest sizes. However, it is found that coagulation, not nucleation, controls number concentration at sizes greater than approximately 10 nm. Therefore, based on this study, processes relevant to atmospheric chemistry and radiative forcing in the UTLS are not sensitive to the choice of nucleation schemes. The dominance of coagulation over other microphysical processes in the UTLS is consistent with other recent work using microphysical models. Simulations using all three nucleation schemes compare reasonably well to observations of size distributions, number concentration across latitude, and vertical profiles of particle mixing ratio in the UTLS. Interestingly, we find that we need to include Van der Waals forces in our coagulation scheme to match the UTLS aerosol concentrations. We conclude that this model can reasonably represent sulfate microphysical processes in the UTLS, and that the properties of particles at atmospherically relevant sizes appear to be insensitive to the details of the nucleation scheme. We also suggest that micrometeorites, which are not included in this model, dominate the aerosol properties in the upper stratosphere above about 30 km.


Sign in / Sign up

Export Citation Format

Share Document