scholarly journals A case study of the day-to-day occurrence of plasma irregularities in low-latitude ionosphere from multi-satellite observations

2019 ◽  
Author(s):  
Weihua Luo ◽  
Chao Xiong ◽  
Zhengping Zhu ◽  
Shanshan Chang ◽  
Xiao Yu

Abstract. Day-to-day variability of the occurrence of plasma irregularities in low-latitude ionosphere is still an open issue. In this study, we report the occurrence of post-sunset plasma bubbles and blobs detected by the First satellite of the Republic of China (ROCSAT-1) in the same longitude sector (170° E) on two successive days, under geomagnetically quiet and disturbed conditions, respectively. Multi-Low Earth orbit (LEO) missions, like the Defense Meteorological Satellite Program (DMSP) F13 and F15, the Gravity Recovery and Climate Experiment (GRACE) and the Challenging Mini-satellite Payload (CHAMP) satellites are used to study the preferable conditions for the occurrence of plasma bubbles and blobs. The observations from the CHAMP and GRACE show that the Equatorial Ionization Anomaly (EIA) was enhanced significantly before the occurrence of plasma irregularities on both two successive days. We suggest that the enhancement of post-sunset eastward electric field is the most important factor for the day-to-day development of the plasma irregularity in equatorial and low-latitude ionosphere. In addition, the meridional neutral wind plays an important role in the occurrence of low-latitude plasma blobs.

Author(s):  
Dada P. Nade ◽  
Swapnil S. Potdar ◽  
Rani P. Pawar

The plasma irregularities have been frequently observed in the F-region, at low latitude regions, due to the instability processes occurring in the ionosphere. The depletions in electron density, as compared to the background density, is a signature of the plasma irregularities. These irregularities are also known as the “equatorial plasma bubble” (EPB). These EPBs can measure by the total electron content (TEC) using GPS receiver and by images of the nightglow OI 630.0 nm emissions using all sky imager (ASI). The current chapter is based on the review on the signature of the EPBs in TEC and ASI. measurements. We have also discussed the importance of the study of EPBs.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Cesar E. Valladares ◽  
Matthew A. Hei

This scientific report presents the results of a dedicated experiment that was conducted within the framework of the Low-latitude ionospheric Sensor Network (LISN) observatory to measure the characteristics of medium-scale (hundreds of km) Traveling Ionospheric Disturbances (TIDs) as they transit through the low-latitude ionosphere. A small array of 3 GPS receivers separated by 4-5 km placed in a triangular configuration was installed near Huancayo in Peru possessing several characteristics of a radio-interferometer. During the campaign days, 17–30 July 2008, TIDs were observed daily. On July 20, 2008 between 22 and 24 UT several TIDs moved across the small array of GPS receivers with a velocity near 130 m/s, were directed northward and had wavelengths close to 450 km. Other GPS receivers that were operating hundreds of km away from Huancayo show also similar TEC traces and provide a phase velocity equal to 150 m/s. This value was measured using the GPS at Piura, Cuzco and Huancayo. Based on this positive result, we conclude that small and/or regional arrays of GPS receivers can be used at low latitudes to study the role that gravity waves may have on seeding plasma bubbles.


2020 ◽  
Author(s):  
Chinmaya Nayak ◽  
Stephan Buchert

<p><span>This paper studies the daytime medium scale traveling ionospheric disturbances (MSTIDs) in the mid- and low-latitude ionosphere for a period of nearly half a solar cycle (2014-2019) using SWARM observations. We specifically focus on daytime MSTIDs to rule out any contribution from nighttime plasma irregularities. Fluctuations in electron density are primarily used to identify the MSTIDs. These wave like structures are independently observed in both electron density and magnetic fluctuations, although they do not always show one to one correlation. In most cases, the structures are observed by both satellite ‘A’ and ‘C’, suggesting that their zonal extent is more than 140 km. The study makes an attempt to understand and explain the magnetic conjugate nature of the MSTIDs. To have a better understanding of the dynamics of the MSTIDs, ground based GPS-TEC and ionosonde data has been used on case to case basis, wherever available. Additionally, spatio-temporal statistics of MSTID distribution is presented. </span></p>


2020 ◽  
Author(s):  
Claudia Stolle ◽  
Juan Rodríguez-Zuluaga ◽  
Chao Xiong ◽  
Yosuke Yamazaki ◽  
Guram Kervalishvili ◽  
...  

<p>The Swarm three-satellite constellation mission provides high resolution and high-quality observations of the Earth’s magnetic field and of multiple parameters of the ionosphere, which lead to new knowledge on the Earth’s interior and space environment and help to investigate space weather effects on space technology. Several findings would otherwise not have been possible and demonstrate that missions like Swarm are indispensable for Earth and space exploration. In addition, aspects of longterm variations or enhanced understanding in temporal and spatial resolution on regional scales could be gained in combination with other missions. This presentation  focuses on recent achievements on the low latitude ionosphere. Examples include an empirical model of the occurrence of post-sunset equatorial plasma irregularities derived in combination with ten years of CHAMP geomagnetic data, an enhanced description of the Swarm irregularity observations together with regional maps of the South Atlantic ionosphere from GOLD, and the identification of differing GPS scintillation characteristics evoked by the irregularities in comparison with the lower orbit GOCE data. Equatorial electrojet and plasma data from Swarm also helped to empirically prove that Antarctic sudden stratospheric warming events, such as in September 2019, couple to the low latitude ionosphere through modified planetary waves.</p>


2020 ◽  
Vol 196 ◽  
pp. 01011
Author(s):  
Alla Suvorova ◽  
Alexei Dmitriev

Experiments on board low-Earth orbit satellites show that energetic particles (tens of keV) of the Earth’s radiation belt can penetrate to the equatorial ionosphere. Impact of the energetic particles on the upper atmosphere and ionosphere was studied for the case of the geomagnetic storm on 22 July 2009. We present changes of local ion concentration in the low-latitude ionosphere at night measured by the C/NOFS satellite at heights 400-800 km during the magnetic storm and quiet days. The ionospheric density during the storm was compared with a simultaneous observation of enhancements of 30-80 keV proton fluxes measured by the NOAA/POES satellites near the equator at height ~850 km. We suggest that ionospheric irregularities at night can be caused by effect of energetic protons.


2020 ◽  
Vol 12 (18) ◽  
pp. 2897
Author(s):  
Weihua Luo ◽  
Chao Xiong ◽  
Jisheng Xu ◽  
Zhengping Zhu ◽  
Shanshan Chang

The daytime plasma density disturbances in the low-latitude ionosphere, referred to as plasma irregularities, mainly occur during the nighttime and are an unusual phenomenon. Based on the observations from multiple low Earth orbiting (LEO) satellites, e.g., the Defense Meteorological Satellite Program (DMSP) F13 and F15, the first Satellite of the Republic of China (ROCSAT-1), the Gravity Recovery and the Climate Experiment (GRACE), and Challenging Mini-satellite Payload (CHAMP) satellites, as well as the ground-based Global Positioning System (GPS) receivers, we report a special event of low-latitude plasma irregularities that were observed after sunrise in the Pacific longitudes on 18 August, 2003, following a moderate geomagnetic storm. Observations from three ground-based GPS stations in both hemispheres showed remarkable total electron content (TEC) disturbances during 20:00 to 21:00 UT (around local sunrise), agreeing well with the in situ plasma density irregularities recorded by the nearby flying LEO satellites. The plasma irregularities observed by these LEO satellites showed quite different depletion intensities at different altitudes. We suggest that the plasma irregularities were freshly generated near sunrise hours due to the disturbance of the dynamo electric field (DDEF), evolving into the post-sunrise and morning sector, but were not the remnant of the plasma irregularities generated during the previous nighttime.


1988 ◽  
Author(s):  
Wayne I. Klemetti ◽  
Paul A. Kossey ◽  
John E. Rasmussen ◽  
Maria Sueli Da Silveira Macedo Moura

Sign in / Sign up

Export Citation Format

Share Document