scholarly journals SIRTA, a ground-based atmospheric observatory for cloud and aerosol research

2005 ◽  
Vol 23 (2) ◽  
pp. 253-275 ◽  
Author(s):  
M. Haeffelin ◽  
L. Barthès ◽  
O. Bock ◽  
C. Boitel ◽  
S. Bony ◽  
...  

Abstract. Ground-based remote sensing observatories have a crucial role to play in providing data to improve our understanding of atmospheric processes, to test the performance of atmospheric models, and to develop new methods for future space-borne observations. Institut Pierre Simon Laplace, a French research institute in environmental sciences, created the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA), an atmospheric observatory with these goals in mind. Today SIRTA, located 20km south of Paris, operates a suite a state-of-the-art active and passive remote sensing instruments dedicated to routine monitoring of cloud and aerosol properties, and key atmospheric parameters. Detailed description of the state of the atmospheric column is progressively archived and made accessible to the scientific community. This paper describes the SIRTA infrastructure and database, and provides an overview of the scientific research associated with the observatory. Researchers using SIRTA data conduct research on atmospheric processes involving complex interactions between clouds, aerosols and radiative and dynamic processes in the atmospheric column. Atmospheric modellers working with SIRTA observations develop new methods to test their models and innovative analyses to improve parametric representations of sub-grid processes that must be accounted for in the model. SIRTA provides the means to develop data interpretation tools for future active remote sensing missions in space (e.g. CloudSat and CALIPSO). SIRTA observation and research activities take place in networks of atmospheric observatories that allow scientists to access consistent data sets from diverse regions on the globe.

OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 14
Author(s):  
Philippe Debaeke ◽  
Emmanuelle Bret-Mestries ◽  
Jean-Noël Aubertot ◽  
Pierre Casadebaig ◽  
Luc Champolivier ◽  
...  

In order to make more efficient plant breeding and gain in competitiveness, the sector of oil-protein crops decided to intensify agronomic research on sunflower crop. The “Sunflower” Joint Technological Unit (Unité Mixte Technologique (UMT) “Tournesol”, in French) was launched in the Toulouse area in 2006, associating closely INRA and Terres Inovia. First focused on improving oil production through an agronomic approach, the UMT was renewed in 2011 with a broader partnership and a more assertive orientation towards the development of decision-making tools. The objective of this paper is to highlight the relevance and productivity of this user-oriented research facility. The main results relate to (i) the co-construction of a simulation model (SUNFLO) that can be parameterized and manipulated by Terres Inovia engineers, (ii) the joint exploration of supra-field scales and new methods for agronomic diagnosis and yield forecasting based on remote sensing, (iii) the tuning and dissemination of operational decision rules, (iv) the production of essential knowledge on emergent and/or damaging fungal diseases, as well as on complex interactions between genotype, environment and crop management. After a concluding symposium in 2016, new requests for sunflower research were formulated by the participants. They also advocated for a diversification of crops to consider in order to better meet the needs of the whole oil-protein sector.


2021 ◽  
Vol 13 (10) ◽  
pp. 1872
Author(s):  
Runze Zhang ◽  
Steven Chan ◽  
Rajat Bindlish ◽  
Venkataraman Lakshmi

Inland open water bodies often pose a systematic error source in the passive remote sensing retrievals of soil moisture. Water temperature is a necessary variable used to compute water emissions that is required to be subtracted from satellite observation to yield actual emissions from the land portion, which in turn generates accurate soil moisture retrievals. Therefore, overestimation of soil moisture can often be corrected using concurrent water temperature data in the overall mitigation procedure. In recent years, several data sets of lake water temperature have become available, but their specifications and accuracy have rarely been investigated in the context of passive soil moisture remote sensing on a global scale. For this reason, three lake temperature products were evaluated against in-situ measurements from 2007 to 2011. The data sets include the lake surface water temperature (LSWT) from Global Observatory of Lake Responses to Environmental Change (GloboLakes), the Copernicus Global Land Operations Cryosphere and Water (C-GLOPS), as well as the lake mix-layer temperature (LMLT) from the European Centers for Medium-Range Weather Forecast (ECMWF) ERA5 Land Reanalysis. GloboLakes, C-GLOPS, and ERA5 Land have overall comparable performance with Pearson correlations (R) of 0.87, 0.92 and 0.88 in comparison with in-situ measurements. LSWT products exhibit negative median biases of −0.27 K (GloboLakes) and −0.31 K (C-GLOPS), whereas the median bias of LMLT is 1.56 K. When mapped from their respective native resolutions to a common 9 km Equal-Area Scalable Earth (EASE) Grid 2.0 projection, similar relative performance was observed. LMLT and LSWT data are closer in performance over the 9 km grid cells that exhibit a small range of lake cover fractions (0.05–0.5). Despite comparable relative performance, ERA5 Land shows great advantages in spatial coverage and temporal resolution. In summary, an integrated evaluation on data accuracy, long-term availability, global coverage, temporal resolution, and regular forward processing with modest data latency led us to conclude that LMLT from the ERA5 Land Reanalysis product represents the most optimal path for use in the development of a long-term soil moisture product.


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


2010 ◽  
Vol 115 (D17) ◽  
Author(s):  
Zhibo Zhang ◽  
Steven Platnick ◽  
Ping Yang ◽  
Andrew K. Heidinger ◽  
Jennifer M. Comstock

2017 ◽  
Vol 21 (9) ◽  
pp. 4747-4765 ◽  
Author(s):  
Clara Linés ◽  
Micha Werner ◽  
Wim Bastiaanssen

Abstract. The implementation of drought management plans contributes to reduce the wide range of adverse impacts caused by water shortage. A crucial element of the development of drought management plans is the selection of appropriate indicators and their associated thresholds to detect drought events and monitor the evolution. Drought indicators should be able to detect emerging drought processes that will lead to impacts with sufficient anticipation to allow measures to be undertaken effectively. However, in the selection of appropriate drought indicators, the connection to the final impacts is often disregarded. This paper explores the utility of remotely sensed data sets to detect early stages of drought at the river basin scale and determine how much time can be gained to inform operational land and water management practices. Six different remote sensing data sets with different spectral origins and measurement frequencies are considered, complemented by a group of classical in situ hydrologic indicators. Their predictive power to detect past drought events is tested in the Ebro Basin. Qualitative (binary information based on media records) and quantitative (crop yields) data of drought events and impacts spanning a period of 12 years are used as a benchmark in the analysis. Results show that early signs of drought impacts can be detected up to 6 months before impacts are reported in newspapers, with the best correlation–anticipation relationships for the standard precipitation index (SPI), the normalised difference vegetation index (NDVI) and evapotranspiration (ET). Soil moisture (SM) and land surface temperature (LST) offer also good anticipation but with weaker correlations, while gross primary production (GPP) presents moderate positive correlations only for some of the rain-fed areas. Although classical hydrological information from water levels and water flows provided better anticipation than remote sensing indicators in most of the areas, correlations were found to be weaker. The indicators show a consistent behaviour with respect to the different levels of crop yield in rain-fed areas among the analysed years, with SPI, NDVI and ET providing again the stronger correlations. Overall, the results confirm remote sensing products' ability to anticipate reported drought impacts and therefore appear as a useful source of information to support drought management decisions.


Sign in / Sign up

Export Citation Format

Share Document