scholarly journals Climatology of northern polar latitude MLT dynamics: mean winds and tides

2010 ◽  
Vol 28 (10) ◽  
pp. 1859-1876 ◽  
Author(s):  
G. Kishore Kumar ◽  
W. K. Hocking

Abstract. Mean winds and tides in the northern polar Mesosphere and Lower Thermosphere (MLT) have been studied using meteor radars located at Resolute Bay (75° N, 95° W) and Yellowknife (62.5° N, 114.3° W). The measurements for Resolute Bay span almost 12 years from July 1997 to February 2009 and the Yellowknife data cover 7 years from June 2002 to October 2008. The analysis reveals similar wind flow over both sites with a difference in magnitude. The summer zonal flow is westward at lower heights, eastward at upper heights and the winter zonal flow is eastward at all heights. The winter meridional flow is poleward and sometimes weakly equatorward, while non winter months show equatorward flow, with a strong equatorward jet during mid-summer months. The zonal and meridional winds show strong interannual variation with a dominant annual variation as well as significant latitudinal variation. Year to year variability in both zonal and meridional winds exists, with a possible solar cycle dependence. The diurnal, semidiurnal and terdiurnal tides also show large interannual variability and latitudinal variation. The diurnal amplitudes are dominated by an annual variation. The climatological monthly mean winds are compared with CIRA 86, GEWM and HWM07 and the climatological monthly mean amplitudes and phases of diurnal and semidiurnal tides are compared with GSWM00 predictions. The GEWM shows better agreement with observations than the CIRA 86 and HWM07. The GSWM00 model predictions need to be modified above 90 km. The agreements and disagreements between observations and models are discussed.

2004 ◽  
Vol 22 (10) ◽  
pp. 3395-3410 ◽  
Author(s):  
Y. I. Portnyagin ◽  
T. V. Solovjova ◽  
N. A. Makarov ◽  
E. G. Merzlyakov ◽  
A. H. Manson ◽  
...  

Abstract. The Arctic MLT wind regime parameters measured at the ground-based network of MF and meteor radar stations (Andenes 69° N, Tromsø 70° N, Esrange 68° N, Dixon 73.5° N, Poker Flat 65° N and Resolute Bay 75° N) are discussed and compared with those observed in the mid-latitudes. The network of the ground-based MF and meteor radars for measuring winds in the Arctic upper mesosphere and lower thermosphere provides an excellent opportunity for study of the main global dynamical structures in this height region and their dependence from longitude. Preliminary estimates of the differences between the measured winds and tides from the different radar types, situated 125-273km apart (Tromsø, Andenes and Esrange), are provided. Despite some differences arising from using different types of radars it is possible to study the dynamical wind structures. It is revealed that most of the observed dynamical structures are persistent from year to year, thus permitting the analysis of the Arctic MLT dynamics in a climatological sense. The seasonal behaviour of the zonally averaged wind parameters is, to some extent, similar to that observed at the moderate latitudes. However, the strength of the winds (except the prevailing meridional wind and the diurnal tide amplitudes) in the Arctic MLT region is, in general, less than that detected at the moderate latitudes, decreasing toward the pole. There are also some features in the vertical structure and seasonal variations of the Arctic MLT winds which are different from the expectations of the well-known empirical wind models CIRA-86 and HWM-93. The tidal phases show a very definite longitudinal dependence that permits the determination of the corresponding zonal wave numbers. It is shown that the migrating tides play an important role in the dynamics of the Arctic MLT region. However, there are clear indications with the presence in some months of non-migrating tidal modes of significant appreciable amplitude.


2013 ◽  
Vol 13 (3) ◽  
pp. 6779-6805
Author(s):  
K. A. Day ◽  
N. J. Mitchell

Abstract. Mean winds in the mesosphere and lower thermosphere (MLT) over Ascension Island (8° S and 14° W) have been investigated using meteor radar wind observations. The results presented in this study are from the interval October 2001 to December 2011. There is a clear annual oscillation in the monthly-mean meridional winds. The monthly-mean meridional winds observed over Ascension Island at meteor heights are found to be southward during April–October, reaching velocities up to about −23 m s−1 and northward the rest of the year, reaching velocities up to about 16 m s−1. The monthly-mean zonal winds are generally westward through most of the year, reaching velocities up to about −46 m s−1. However, there are eastward winds in May–August and again in December in the lower heights that the radar observes. These winds maximises at heights of about 86 km reaching velocities up to about 36 m s−1 and decays quickly above and below. The Mesospheric Semi-Annual Oscillation (MSAO) is clearly observed in the monthly-mean zonal winds. The first westward phase of the winds is much stronger than the second. The first westward phase of the MSAO was found to maximise at heights of about 84 km and to in general reach amplitudes of about −35 m s−1. We have compared the HWM-07 model to our observations. Our observed meridional winds are generally more southward than those of the model at meteor heights in the southern hemispheric winter, whereas HWM-07 suggests that in this season only weakly southward, or even northward flows occur at the lower heights. The zonal monthly-mean winds are in general agreement but somewhat less westward than observed by the radar. In one of the eight events in which the first westward phase of the MSAO was observed, the strongest westward winds reached about −75 m s−1, compared to the mean of about −35 m s−1 for other events. We explain this observation in terms of a mechanism which has been previously proposed by others. In this the relative phasing of the Stratospheric Quasi-Biennial Oscillation (SQBO) and the MSAO allow an unusually large flux of gravity waves with westward phase speed to reach the mesosphere. The dissipation of these waves then drives the MLT winds to large westward velocities. We demonstrate that the necessary phase relationship existed during the event we observed in 2002 and not during other times. This provides strong support for the suggestion that those extremes in zonal flow are a~result of modulated gravity-wave fluxes.


2017 ◽  
Vol 35 (4) ◽  
pp. 953-963 ◽  
Author(s):  
Cosme Alexandre O. B. Figueiredo ◽  
Ricardo A. Buriti ◽  
Igo Paulino ◽  
John W. Meriwether ◽  
Jonathan J. Makela ◽  
...  

Abstract. The midnight temperature maximum (MTM) has been observed in the lower thermosphere by two Fabry–Pérot interferometers (FPIs) at São João do Cariri (7.4° S, 36.5° W) and Cajazeiras (6.9° S, 38.6° W) during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU  =  10−22 W m−2 Hz−1). The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300), and ionospheric parameters, such as virtual height (h′F), the peak height of the F2 region (hmF2), and critical frequency of the F region (foF2), which were measured by a Digisonde instrument (DPS) at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011). The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012) model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s−1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s−1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to −50 m s−1. Our results indicate that the reversal (changes in equator to poleward flow) or abatement of the meridional winds is an important factor in the MTM generation. From February to April and from September to December, the h′F and the hmF2 showed an increase around 18:00–20:00 LT within a range between 300 and 550 km and reached a minimal height of about 200–300 km close to midnight; then the layer rose again by about 40 km or, sometimes, remained at constant height. Furthermore, during the winter months, the h′F and hmF2 showed a different behavior; the signature of the pre-reversal enhancement did not appear as in other months and the heights did not exceed 260 and 350 km. Our observation indicated that the midnight collapse of the F region was a consequence of the MTM in the meridional wind that was reflected in the height of the F region. Lastly, the behavior of the OI6300 showed, from February to April and from September to December, an increase in intensity around midnight or 1 h before, which was associated with the MTM, whereas, from May to August, the relative intensity was more intense in the early evening and decayed during the night.


2012 ◽  
Vol 12 (3) ◽  
pp. 1571-1585 ◽  
Author(s):  
K. A. Day ◽  
M. J. Taylor ◽  
N. J. Mitchell

Abstract. Atmospheric temperatures and winds in the mesosphere and lower thermosphere have been measured simultaneously using the Aura satellite and a meteor radar at Bear Lake Observatory (42° N, 111° W), respectively. The data presented in this study is from the interval March 2008 to July 2011. The mean winds observed in the summer-time over Bear Lake Observatory show the meridional winds to be equatorward at meteor heights during April−August and to reach monthly-mean velocities of −12 m s−1. The mean winds are closely related to temperatures in this region of the atmosphere and in the summer the coldest mesospheric temperatures occur about the same time as the strongest equatorward meridional winds. The zonal winds are eastward through most of the year and in the summer strong eastward zonal wind shears of up to ~4.5 m s−1 km−1 are present. However, westward winds are observed at the upper heights in winter and sometimes during the equinoxes. Considerable inter-annual variability is observed in the mean winds and temperatures. Comparisons of the observed winds with URAP and HWM-07 reveal some large differences. Our radar zonal wind observations are generally more eastward than predicted by the URAP model zonal winds. Considering the radar meridional winds, in comparison to HWM-07 our observations reveal equatorward flow at all meteor heights in the summer whereas HWM-07 suggests that only weakly equatorward, or even poleward flows occur at the lower heights. However, the zonal winds observed by the radar and modelled by HWM-07 are generally similar in structure and strength. Signatures of the 16- and 5-day planetary waves are clearly evident in both the radar-wind data and Aura-temperature data. Short-lived wave events can reach large amplitudes of up to ~15 m s−1 and 8 K and 20 m s−1 and 10 K for the 16- and 5-day waves, respectively. A clear seasonal and short-term variability are observed in the 16- and 5-day planetary wave amplitudes. The 16-day wave reaches largest amplitude in winter and is also present in summer, but with smaller amplitudes. The 5-day wave reaches largest amplitude in winter and in late summer. An inter-annual variability in the amplitude of the planetary waves is evident in the four years of observations. Some 41 episodes of large-amplitude wave occurrence are identified. Temperature and wind amplitudes for these episodes, AT and AW, that passed the Student T-test were found to be related by, AT = 0.34 AW and AT = 0.62 AW for the 16- and 5-day wave, respectively.


1997 ◽  
Vol 59 (5) ◽  
pp. 497-509 ◽  
Author(s):  
J. Bremer ◽  
R. Schminder ◽  
K.M. Greisiger ◽  
P. Hoffmann ◽  
D. Kürschner ◽  
...  

1980 ◽  
Vol 26 (94) ◽  
pp. 43-52 ◽  
Author(s):  
B.B. Fitzharris ◽  
P. A. Schaerer

AbstractA 70-Year record has been compiled for avalanches affecting the Canadian Pacific Railway at Rogers Pass, British Columbia. Time series are presented for avalanche frequency, avalanche mass, and length of avalanche debris on the rail line for 26 avalanche paths as well as for winter snow-fall. Winters with the heaviest avalanche activity were 1971-72, 1934-35, 1919-20, 1932-33, and 1953-54. Time-series analysis indicates that the size of avalanches has decreased in recent decades. Spectral analysis shows avalanche activity to the similar to white noise but with a weak periodicity of about 18 years. An examination of the climatology of big avalanche winters reveals two distinct circulation patterns: a strong zonal flow with frequent Pacific storms and heavy snow-fall; or a pronounced meridional flow, Arctic air outbreaks, and catastrophic avalanching released by rapid advection of warm moist Pacific air. Major avalanche winters need not be big snow-fall winters.


2018 ◽  
Vol 146 (8) ◽  
pp. 2639-2666 ◽  
Author(s):  
Stephen D. Eckermann ◽  
Jun Ma ◽  
Karl W. Hoppel ◽  
David D. Kuhl ◽  
Douglas R. Allen ◽  
...  

AbstractA data assimilation system (DAS) is described for global atmospheric reanalysis from 0- to 100-km altitude. We apply it to the 2014 austral winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE), an international field campaign focused on gravity wave dynamics from 0 to 100 km, where an absence of reanalysis above 60 km inhibits research. Four experiments were performed from April to September 2014 and assessed for reanalysis skill above 50 km. A four-dimensional variational (4DVAR) run specified initial background error covariances statically. A hybrid-4DVAR (HYBRID) run formed background error covariances from an 80-member forecast ensemble blended with a static estimate. Each configuration was run at low and high horizontal resolution. In addition to operational observations below 50 km, each experiment assimilated 105 observations of the mesosphere and lower thermosphere (MLT) every 6 h. While all MLT reanalyses show skill relative to independent wind and temperature measurements, HYBRID outperforms 4DVAR. MLT fields at 1-h resolution (6-h analysis and 1–5-h forecasts) outperform 6-h analysis alone due to a migrating semidiurnal (SW2) tide that dominates MLT dynamics and is temporally aliased in 6-h time series. MLT reanalyses reproduce observed SW2 winds and temperatures, including phase structures and 10–15-day amplitude vacillations. The 0–100-km reanalyses reveal quasi-stationary planetary waves splitting the stratopause jet in July over New Zealand, decaying from 50 to 80 km then reintensifying above 80 km, most likely via MLT forcing due to zonal asymmetries in stratospheric gravity wave filtering.


1984 ◽  
Vol 142 ◽  
pp. 343-362 ◽  
Author(s):  
Timothy L. Miller

A finite-difference Navier-Stokes model has been used to study rotating baroclinic flow for Richardson number [lsim ] 1, assuming no variations except in the vertical plane wholly containing the density-gradient vector. A section of a horizontally infinite channel has been studied, assuming periodic boundary conditions at the vertical computational boundaries and no-slip conducting horizontal boundaries. Two configurations were studied, both of which have an analytic basic solution with no horizontal variations in the velocities or density gradients. Symmetric baroclinic waves developed in the flows, as long as the Richardson number was not too large and the thermal Rossby number was large enough (for fixed diffusion parameters), consistent with linear theory. The structures and energetics of the fully developed waves were found to be especially dependent upon the Prandtl number Pr. Potential energy was the ultimate wave-energy source in all cases, and the average zonal flow was never much affected by the waves. For Pr > 1 the conversion from potential energy to wave kinetic energy was direct, via temperature and vertical-motion correlation. For Pr < 1 the conversion was from potential energy, to average kinetic energy by virtue of an induced meridional flow, to wave kinetic energy. For Pr = 1 the energy conversion was by either or both of the above, depending upon the other parameters.


2019 ◽  
Author(s):  
Dan Chen ◽  
Cornelia Strube ◽  
Manfred Ern ◽  
Peter Preusse ◽  
Martin Riese

Abstract. Atmospheric gravity waves (GWs) are an important coupling mechanism in the middle atmosphere. For instance, they provide a large part of the driving of long-period atmospheric oscillations such as the quasi-biennial oscillation (QBO) and the semiannual oscillation (SAO) and are in turn modulated. They also induce the wind reversal in the mesosphere – lower thermosphere region (MLT) and the residual mean circulation at these altitudes. In this study, the variations of monthly zonal mean gravity wave square temperature amplitudes (GWSTA) and, for a first time, absolute gravity wave momentum flux (GWMF) on different time scales such as the annual, semiannual, terannual and quasi-biennial variations are investigated by spectrally analyzing SABER observations from 2002 to 2015. Latitude-altitude cross sections of spectral amplitudes and phases of GWSTA and absolute GWMF in stratosphere and mesosphere are presented and physically interpreted. It is shown that the time series of GWSTA/GWMF at a certain altitude and latitude results from the complex interplay of GW sources, propagation through and filtering in lower altitudes, oblique propagation superposing GWs from different source locations and, finally, the modulation of the GW spectrum by the winds at a considered altitude and latitude. The strongest component is the annual variation, dominated on the summer hemisphere by subtropical convective sources, and on the winter hemisphere by polar vortex dynamics. At heights of the wind reversal also a 180° phase shift occurs, which is at different altitudes for GWSTA and GWMF. In the intermediate latitudes a semi-annual variation (SAV) is found. Dedicated GW modeling is used to investigate the nature of this SAV, which is a different phenomenon from the tropical SAO also seen in the data. In the tropics a stratospheric and a mesospheric QBO are found, which are, as expected, in anti-phase. Indication for a QBO influence is also found at higher latitudes. In previous studies a terannual variation (TAV) was identified. In the current study we explain its origin. In particular the observed patterns for the shorter periods, SAV and TAV, can only be explained by poleward propagation of GWs from the lower stratosphere subtropics into the mid and high latitude mesosphere. In this way, critical wind filtering in the lowermost stratosphere is avoided and this oblique propagation hence is likely an important factor for MLT dynamics.


2020 ◽  
Vol 79 (3) ◽  
pp. 207-218
Author(s):  
EE Montpellier ◽  
PT Soulé ◽  
PA Knapp ◽  
L Baker Perry

Mid-latitude mesoscale weather during the climatological summer is strongly influenced by fluctuations in synoptic-scale circulation patterns. Previous research has linked Arctic amplification to alterations in summer synoptic climatology, leading to more extreme weather events in the mid-latitudes. In this study, seasonal (JJA) upper-level (500 hPa) atmospheric flow is reconstructed in the mid-latitudes using an alpine larch Larix lyallii Parl. tree-ring chronology sampled from western Montana. Significant relationships were found between alpine larch radial growth and upper-level flow patterns derived from the North American Regional Reanalysis dataset (1979-2015). Meridional and zonal flows that manifest in ridging are associated with enhanced radial growth of alpine larch (i.e. meridional flow west [r = 0.504, p = 0.001] and zonal flow north [r = 0.642, p < 0.001] of the study site). Meridional and zonal flows associated with troughing result in decreased radial growth (i.e. meridional flow east [r = -0.497, p = 0.001] and zonal flow south [r = -0.584, p < 0.001] of the study site). Using the leave-one-out method, a linear regression model was calibrated and verified between a principal component analysis score derived from measurements of upper-level flow in western North America and alpine larch tree growth. The 444 yr climate reconstruction of summer 500 hPa flow suggests that ridging is becoming more intense over the western United States and Canada since the 1980s.


Sign in / Sign up

Export Citation Format

Share Document