scholarly journals The correlation between solar and geomagnetic activity – Part 2: Long-term trends

2011 ◽  
Vol 29 (8) ◽  
pp. 1341-1348 ◽  
Author(s):  
Z. L. Du

Abstract. Using lag-correlation function analysis, the correlation coefficient at zero lag (r0), the maximum (rm) and the corresponding lag time (Lm) between solar (Rz) and geomagnetic (aa) activity for a 528-month (44-year) running time window are shown to vary in a declining, declining and rising secular trend, respectively, before 1958. However, these trends changed since 1958 with a rising secular trend in both r0 and rm and without a significant trend in Lm, probably related to a periodicity longer than 140 years. An odd-numbered solar cycle tends to show a higher correlation and a shorter lag time between Rz and aa than the previous even-numbered one, suggesting a 2-cycle periodicity superimposed on secular trends. An even-numbered Hale cycle tends to show a higher correlation and a shorter lag time between Rz and aa than the previous odd-numbered one, suggesting a 4-cycle periodicity superimposed on secular trends. The variations in the correlations may be related to the non-linearity between Rz and aa, and the decreasing trend in the correlation (r0) is not exclusively caused by the increasing trend in the lag time of aa to Rz. These results represent an observational constraint on solar-dynamo models and can help us gain a better understanding of the long-term evolution of solar activities. In applications, therefore, cautions must be taken when using the correlation for molding the dynamical process of the Sun and for predicting solar activities.

2014 ◽  
Vol 27 (8) ◽  
pp. 824-837 ◽  
Author(s):  
Kim Lachance ◽  
Michel White ◽  
Michel Carrier ◽  
Asmaa Mansour ◽  
Normand Racine ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 752
Author(s):  
Bo Hong ◽  
Jie Zhang

The long-term trends of sea surface wind are of great importance to our understanding of the effects of climate change on the marine environment. In the northern South China Sea (SCS), the long-term changes in coastal sea surface wind are not well-understood. Based on the latest reanalysis (ERA5) data from 1979 to 2019, our analysis showed a decreasing trend in the annual mean wind speed in the coastal area and an increasing trend in the open sea. There was a significant weakening trend in the easterly wind component in the coastal and continental shelf areas, whereas there was an increasing trend in the northerly wind component in the open sea. The Mann–Kendall mutation analysis suggested that there were significant changes in the wind speed and frequency of strong wind. Significant correlations were found between the variation of the wind field and El Niño–Southern Oscillation by wave coherence analysis. The strengthening of the wind stress curl was an important factor for the enhancement of coastal upwelling along the coast of the northern SCS. The wind field plays an important role in modulating the climatic change of significant wave height.


2014 ◽  
Vol 513 ◽  
pp. 143-153 ◽  
Author(s):  
CD Stallings ◽  
JP Brower ◽  
JM Heinlein Loch ◽  
A Mickle

Sign in / Sign up

Export Citation Format

Share Document