scholarly journals Spatial dimensions of the electron diffusion region in anti-parallel magnetic reconnection

2016 ◽  
Vol 34 (3) ◽  
pp. 357-367 ◽  
Author(s):  
Takuma Nakamura ◽  
Rumi Nakamura ◽  
Hiroshi Haseagwa

Abstract. Spatial dimensions of the detailed structures of the electron diffusion region in anti-parallel magnetic reconnection were analyzed based on two-dimensional fully kinetic particle-in-cell simulations. The electron diffusion region in this study is defined as the region where the positive reconnection electric field is sustained by the electron inertial and non-gyrotropic pressure components. Past kinetic studies demonstrated that the dimensions of the whole electron diffusion region and the inner non-gyrotropic region are scaled by the electron inertial length de and the width of the electron meandering motion, respectively. In this study, we successfully obtained more precise scalings of the dimensions of these two regions than the previous studies by performing simulations with sufficiently small grid spacing (1∕16–1∕8 de) and a sufficient number of particles (800 particles cell−1 on average) under different conditions changing the ion-to-electron mass ratio, the background density and the electron βe (temperature). The obtained scalings are adequately supported by some theories considering spatial variations of field and plasma parameters within the diffusion region. In the reconnection inflow direction, the dimensions of both regions are proportional to de based on the background density. Both dimensions also depend on βe based on the background values, but the dependence in the inner region ( ∼ 0.375th power) is larger than the whole region (0.125th power) reflecting the orbits of meandering and accelerated electrons within the inner region. In the outflow direction, almost only the non-gyrotropic component sustains the positive reconnection electric field. The dimension of this single-scale diffusion region is proportional to the ion-electron hybrid inertial length (dide)1∕2 based on the background density and weakly depends on the background βe with the 0.25th power. These firm scalings allow us to predict observable dimensions in real space which are indeed in reasonable agreement with past in situ spacecraft observations in the Earth's magnetotail and have important implications for future observations with higher resolutions such as the NASA Magnetospheric Multiscale (MMS) mission.

2020 ◽  
Author(s):  
Michael Hesse ◽  
Cecilia Norgren ◽  
Paul Tenfjord ◽  
James Burch ◽  
Yi-Hsin Liu ◽  
...  

<p>At some level, magnetic reconnection functions by means of a balance between current dissipation, and current maintenance due to the reconnection electric field. While this dissipation is well understood process in symmetric magnetic reconnection, the way nonideal electric fields interact with the current density in asymmetric reconnection is still unclear. In symmetric reconnection, the current density maximum, the X point location, and the nonideal electric field determined by the divergence of the electron pressure tensor usually coincide. In asymmetric reconnection, however, the electric field at the X point can be partly provided by bulk inertia terms, implying that the X point cannot be the dominant location of dissipation. On the other hand, we know that the nongyrotropic pressure-based electric field must dominate at the stagnation point of the in-plane electron flow, and that electron distributions here feature crescents. The further fact that the current density peak is shifted off the position of the X point indicates that there may be a relation between this current density enhancement, the location of the stagnation point, and the electron nongyrotropies. In this presentation we report on further progress investigating the physics of the electron diffusion region in asymmetric reconnection with a focus on how to explain the dissipation operating under these conditions. </p>


2008 ◽  
Vol 101 (8) ◽  
Author(s):  
Yang Ren ◽  
Masaaki Yamada ◽  
Hantao Ji ◽  
Stefan P. Gerhardt ◽  
Russell Kulsrud

2021 ◽  
Author(s):  
Takuma Nakamura ◽  
Hiroshi Hasegawa ◽  
Tai Phan ◽  
Kevin Genestreti ◽  
Richard Denton ◽  
...  

<p>Magnetic reconnection is a key fundamental process in collisionless plasmas that explosively converts magnetic energy to plasma kinetic and thermal energies through a change of magnetic field topology in an electron-scale central region called the electron diffusion region. Past simulations and observations demonstrated that this process causes efficient energy conversion through the formation of multiple macro-scale or micro-scale magnetic islands/flux ropes. However, how these different spatiotemporal scale phenomena are coupled is still poorly understood. In this study, to investigate the turbulent evolution of magnetic reconnection, we perform a new large-scale fully kinetic simulation of a thin current sheet considering a power-law spectrum of initial fluctuations in the magnetic field as frequently observed in the Earth’s magnetotail. The simulation demonstrates that during a macro-scale evolution of turbulent reconnection, the merging of macro-scale islands results in reduction of the rate of reconnection as well as the aspect ratio of the electron diffusion region. This allows the repeated, quick formation of new electron-scale islands within the electron diffusion region, leading to an efficient energy cascade between macro- and micro-scales. The simulation also demonstrates that a strong electron acceleration/heating occurs during the micro-scale island evolution within the EDR. These new findings indicate the importance of non-steady features of the EDR to comprehensively understand the energy conversion and cascade processes in collisionless reconnection.</p>


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
W. Y. Li ◽  
D. B. Graham ◽  
Yu. V. Khotyaintsev ◽  
A. Vaivads ◽  
M. André ◽  
...  

AbstractThe Magnetospheric Multiscale (MMS) spacecraft encounter an electron diffusion region (EDR) of asymmetric magnetic reconnection at Earth’s magnetopause. The EDR is characterized by agyrotropic electron velocity distributions on both sides of the neutral line. Various types of plasma waves are produced by the magnetic reconnection in and near the EDR. Here we report large-amplitude electron Bernstein waves (EBWs) at the electron-scale boundary of the Hall current reversal. The finite gyroradius effect of the outflow electrons generates the crescent-shaped agyrotropic electron distributions, which drive the EBWs. The EBWs propagate toward the central EDR. The amplitude of the EBWs is sufficiently large to thermalize and diffuse electrons around the EDR. The EBWs contribute to the cross-field diffusion of the electron-scale boundary of the Hall current reversal near the EDR.


2020 ◽  
Author(s):  
Mats André ◽  
Sergio Toledo-Redondo ◽  
Andrew W Yau

<p><span lang="EN-US">Cold (eV) ions of ionospheric origin dominate the number density of most of the volume of the magnetosphere during most of the time. </span><span lang="EN-US">Supersonic flows of cold positive ions are common and can cause a negatively charged wake behind a positively charged spacecraft. The associated induced electric field can be observed and can be used to study the cold ions. We present observations from the Cluster and MMS spacecraft showing how a charged satellite, and also individual charged wire booms of  an electric field instrument, can be used to investigate cold ion populations. </span><span lang="EN-US">Ionospheric ions affect large scales, including the Alfvén velocity and </span><span lang="EN-US"> </span><span lang="EN-US">thus energy transport with waves and the magnetic reconnection rate. These ions also affect small-scale kinetic plasma physics, including the Hall physics and wave instabilities associated with magnetic reconnection. Concerning large scales, we summarize observations from several spacecraft and show that a typical total outflow rate of ionospheric ions is 10<sup>26</sup> ions/s and that many of these ions stay cold also after a long time in the magnetosphere.  Concerning small scales, we show examples of how cold ions modify the Hall physics of thin current sheets, including magnetic reconnection separatrices. On small kinetic scales the cold ions introduce a new length-scale, a gyro radius between the gyro radii of hot (keV) ions and electrons. </span><span lang="EN-US">The Hall currents carried by electrons can be partially cancelled by the cold ions when electrons and the magnetized cold ions ExB drift together. Also, close to a reconnection X-line an additional diffusion region can be formed (regions associated with hot and cold ions, and with electrons, total of three).</span></p>


2020 ◽  
Author(s):  
Wenya Li ◽  
Daniel Graham ◽  
Binbin Tang ◽  
Andris Vaivads ◽  
Mats Andre ◽  
...  

<p>The Magnetospheric Multiscale spacecraft encounter an electron diffusion region (EDR) of asymmetric magnetic reconnection at Earth's magnetopause. The EDR is characterized by agyrotropic electron velocity distributions on both sides of the neutral line. Various types of plasma waves are produced by the magnetic reconnection in and near the EDR. Here we report large-amplitude electron Bernstein waves (EBWs) at the electron-scale boundary of the Hall current reversal. The finite gyroradius effect of the outflow electrons generates the crescent-shaped agyrotropic electron distributions, which drive the EBWs. The EBWs propagate toward the central EDR. The amplitude of the EBWs is sufficiently large to thermalize and diffuse electrons around the EDR. Our analysis shows that the EBWs contribute to the cross-field diffusion of the electron-scale boundary of the Hall current reversal near the EDR.</p>


2016 ◽  
Vol 117 (1) ◽  
Author(s):  
S. Eriksson ◽  
F. D. Wilder ◽  
R. E. Ergun ◽  
S. J. Schwartz ◽  
P. A. Cassak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document