scholarly journals Validation of the McClear clear-sky model in desert conditions with three stations in Israel

2016 ◽  
Vol 13 ◽  
pp. 21-26 ◽  
Author(s):  
Mireille Lefèvre ◽  
Lucien Wald

Abstract. The new McClear clear-sky model, a fast model based on a radiative transfer solver, exploits the atmospheric properties provided by the EU-funded Copernicus Atmosphere Monitoring Service (CAMS) to estimate the solar direct and global irradiances received at ground level in cloud-free conditions at any place any time. The work presented here focuses on desert conditions and compares the McClear irradiances to coincident 1 min measurements made in clear-sky conditions at three stations in Israel which are distant from less than 100 km. The bias for global irradiance is comprised between 2 and 32 W m−2, i.e. between 0 and 4 % of the mean observed irradiance (approximately 830 W m−2). The RMSE ranges from 30 to 41 W m−2 (4 %) and the squared correlation coefficient is greater than 0.976. The bias for the direct irradiance at normal incidence (DNI) is comprised between −68 and +13 W m−2, i.e. between −8 and 2 % of the mean observed DNI (approximately 840 W m−2). The RMSE ranges from 53 (7 %) to 83 W m−2 (10 %). The squared correlation coefficient is close to 0.6. The performances are similar for the three sites for the global irradiance and for the DNI to a lesser extent, demonstrating the robustness of the McClear model combined with CAMS products. These results are discussed in the light of those obtained by McClear for other desert areas in Egypt and United Arab Emirates.

2013 ◽  
Vol 6 (9) ◽  
pp. 2403-2418 ◽  
Author(s):  
M. Lefèvre ◽  
A. Oumbe ◽  
P. Blanc ◽  
B. Espinar ◽  
B. Gschwind ◽  
...  

Abstract. A new fast clear-sky model called McClear was developed to estimate the downwelling shortwave direct and global irradiances received at ground level under clear skies. It is a fully physical model replacing empirical relations or simpler models used before. It exploits the recent results on aerosol properties, and total column content in water vapour and ozone produced by the MACC project (Monitoring Atmosphere Composition and Climate). It accurately reproduces the irradiance computed by the libRadtran reference radiative transfer model with a computational speed approximately 105 times greater by adopting the abaci, or look-up table, approach combined with interpolation functions. It is therefore suited for geostationary satellite retrievals or numerical weather prediction schemes with many pixels or grid points, respectively. McClear irradiances were compared to 1 min measurements made in clear-sky conditions at several stations within the Baseline Surface Radiation Network in various climates. The bias for global irradiance comprises between −6 and 25 W m−2. The RMSE ranges from 20 W m−2 (3% of the mean observed irradiance) to 36 W m−2 (5%) and the correlation coefficient ranges between 0.95 and 0.99. The bias for the direct irradiance comprises between −48 and +33 W m−2. The root mean square error (RMSE) ranges from 33 W m−2 (5%) to 64 W m−2 (10%). The correlation coefficient ranges between 0.84 and 0.98. This work demonstrates the quality of the McClear model combined with MACC products, and indirectly the quality of the aerosol properties modelled by the MACC reanalysis.


2020 ◽  
Vol 17 ◽  
pp. 143-152
Author(s):  
Mathilde Marchand ◽  
Yves-Marie Saint-Drenan ◽  
Laurent Saboret ◽  
Etienne Wey ◽  
Lucien Wald

Abstract. The present work deals with the spatial consistency of two well-known databases of solar radiation received at ground level: the CAMS Radiation Service database version 3.2, abbreviated as CAMS-Rad and the HelioClim-3 database version 5, abbreviated as HC3v5. Both databases are derived from satellite images. They are validated against 10 min means of irradiance for the period 2010–2018 recorded in a network of 26 ground stations in Germany operated by the Deutscher Wetterdienst (DWD). For the CAMS-Rad database, the correlation coefficient between ground measurements and estimates ranges between 0.83 and 0.92 for all sky conditions. The bias ranges from −41 and 32 W m−2 (−11 % and 10 % of the mean irradiance). The standard deviation ranges between 89 and 129 W m−2 (25 % and 39 %). For the HC3v5 database, the correlation coefficient ranges between 0.90 and 0.95. The bias and the standard deviation are comprised between −22 and 16 W m−2 (−6 % and 5 %), and between respectively 70 and 104 W m−2 (20 % and 31 %). For the CAMS Rad database, overestimation is observed in the South, and underestimation in the North with a faint tendency of the bias to increase from East to West. For the HC3v5 database, the bias is fairly homogeneous across Germany. For both databases, there is no noticeable spatial trend in the standard deviation.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 643
Author(s):  
William Wandji Nyamsi ◽  
Philippe Blanc ◽  
Dominique Dumortier ◽  
Ruben Mouangue ◽  
Antti Arola ◽  
...  

Natural daylight is recognized as an important variable in the energy performance of buildings. A method that estimates the global illuminance received on a horizontal surface at ground level and its direct component at normal incidence under cloudless conditions is presented. The method uses the k-distribution method and the correlated-k approximation to compute a set of clearness indices integrated over 13 spectral bands covering the range 380–780 nm. A spectral resampling technique, including a spectral disaggregation and a spectral linear interpolation, is applied to these indices for providing a detailed set of solar irradiances at 1 nm in spectral resolution over the whole range. Then, these are weighted by the standardized CIE action spectrum for human eye for assessing the illuminance. Inputs to the method include the total column contents of ozone and water vapor as well as aerosol optical properties produced by the Copernicus Atmosphere Monitoring Service. Estimates of illuminance were compared to high-quality 1 min measurements of illuminance that were collected from two experimental sites located in two different climatic zones. A slight overestimation is observed for the global illuminance: the bias is between +1 klx and +3 klx, i.e., between +1% and +4% in relative value. The root mean square error varies between 5 klx (8%) and 6 klx (9%). The squared correlation coefficient ranges between 0.95 and 0.97. At the site providing the direct illuminance at normal incidence, the performance of the method is lower compared to global illuminance with a lower squared correlation coefficient of 0.53. The bias, relative bias, RMSE, and rRMSE are +7 klx, +9%, 12 klx, and 15%, respectively. The uncertainty of the method is of the order of the uncertainty of the measurements. The method offers accurate estimates of illuminance in cloudless conditions at high spatial and temporal resolutions useful for construction industries and operators as well as thermal simulation tools for optimal building design strategies.


2018 ◽  
Vol 10 (10) ◽  
pp. 1651 ◽  
Author(s):  
Bikhtiyar Ameen ◽  
Heiko Balzter ◽  
Claire Jarvis ◽  
Etienne Wey ◽  
Claire Thomas ◽  
...  

Several sectors need global horizontal irradiance (GHI) data for various purposes. However, the availability of a long-term time series of high quality in situ GHI measurements is limited. Therefore, several studies have tried to estimate GHI by re-analysing climate data or satellite images. Validation is essential for the later use of GHI data in the regions with a scarcity of ground-recorded data. This study contributes to previous studies that have been carried out in the past to validate HelioClim-3 version 5 (HC3v5) and the Copernicus Atmosphere Monitoring Service, using radiation service version 3 (CRSv3) data of hourly GHI from satellite-derived datasets (SDD) with nine ground stations in northeast Iraq, which have not been used previously. The validation is carried out with station data at the pixel locations and two other data points in the vicinity of each station, which is something that is rarely seen in the literature. The temporal and spatial trends of the ground data are well captured by the two SDDs. Correlation ranges from 0.94 to 0.97 in all-sky and clear-sky conditions in most cases, while for cloudy-sky conditions, it is between 0.51–0.72 and 0.82–0.89 for the clearness index. The bias is negative for most of the cases, except for three positive cases. It ranges from −7% to 4%, and −8% to 3% for the all-sky and clear-sky conditions, respectively. For cloudy-sky conditions, the bias is positive, and differs from one station to another, from 16% to 85%. The root mean square error (RMSE) ranges between 12–20% and 8–12% for all-sky and clear-sky conditions, respectively. In contrast, the RMSE range is significantly higher in cloudy-sky conditions: above 56%. The bias and RMSE for the clearness index are nearly the same as those for the GHI for all-sky conditions. The spatial variability of hourly GHI SDD differs only by 2%, depending on the station location compared to the data points around each station. The variability of two SDDs is quite similar to the ground data, based on the mean and standard deviation of hourly GHI in a month. Having station data at different timescales and the small number of stations with GHI records in the region are the main limitations of this analysis.


2008 ◽  
Vol 8 (18) ◽  
pp. 5615-5626 ◽  
Author(s):  
P. Weihs ◽  
M. Blumthaler ◽  
H. E. Rieder ◽  
A. Kreuter ◽  
S. Simic ◽  
...  

Abstract. A measurement campaign was performed in the region of Vienna and its surroundings from May to July 2007. Within the scope of this campaign erythemal UV was measured at six ground stations within a radius of 30 km. First, the homogeneity of the UV levels within the area of one satellite pixel was studied. Second, the ground UV was compared to ground UV retrieved by the ozone monitoring instrument (OMI) onboard the NASA EOS Aura Spacecraft. During clear-sky conditions the mean bias between erythemal UV measured by the different stations was within the measurement uncertainty of ±5%. Short term fluctuations of UV between the stations were below 3% within a radius of 20 km. For partly cloudy conditions and overcast conditions the discrepancy of instantaneous values between the stations is up to 200% or even higher. If averages of the UV index over longer time periods are compared the difference between the stations decreases strongly. The agreement is better than 20% within a distance of 10 km between the stations for 3 h averages. The comparison with OMI UV showed for clear-sky conditions higher satellite retrieved UV values by, on the average, approximately 15%. The ratio of OMI to ground measured UV lies between 0.9 and 1.5. and strongly depends on the aerosol optical depth. For partly cloudy and overcast conditions the OMI derived surface UV estimates show larger deviation from the ground-based reference data, and even bigger systematic positive bias. Here the ratio OMI to ground data lies between 0.5 and 4.5. The average difference between OMI and ground measurements is +24 to +37% for partly cloudy conditions and more than +50% for overcast conditions.


2008 ◽  
Vol 8 (17) ◽  
pp. 5393-5401 ◽  
Author(s):  
A. Pribullová ◽  
M. Chmelík

Abstract. Maps of solar erythemal ultraviolet (EUV) irradiance daily doses were created for every month with a horizontal resolution of 500 m at the geographical domain 47.15 N–49.86 N×16.94 E–22.81 E covering the territory of Slovakia. The cloud modification factor for the EUV radiation (cmfUV) was modeled utilizing the relation between the cloud modification factor of global and EUV radiation. The maps of the cmfUV factor were created by utilizing measurements of global irradiance performed at nine observatories during the period 1995–2004 and modeling of the cmfUV dependence on altitude. Maps of the EUV irradiance daily dose corresponded to clear-sky conditions and EUV irradiance daily dose affected by average cloudiness were constructed for mean monthly total ozone, its upper and lower monthly limits, for two probability levels of snow cover occurrence as criteria for the snow effect incorporation in the model and for one day representing typical values for every month. The map-set can be regarded as an atlas of solar EUV radiation over Slovakia.


1980 ◽  
Vol 102 (3) ◽  
pp. 196-202 ◽  
Author(s):  
F. C. Hooper ◽  
A. P. Brunger

A flexible mathematical model is introduced which describes the radiance of the dome of the sky under various conditions. This three-component continuous distribution (TCCD) model is compounded by the superposition of three separate terms, isotropic, circumsolar and horizon-brightening factors, each representing the contribution of a distinguishable sky characteristic. In use, a particular sky condition is characterized by the values of the coefficients of each of these three terms, defining the distribution of the total diffuse component. The TCCD model has been demonstrated to fit both the normalized clear sky data and the normalized overcast sky data with an RMS error of about ten percent of the mean overall sky radiance. By extension the model could describe variable or partly clouded sky conditions. The model will permit improvement in the prediction of the total solar radiation incident upon a surface of given tilt and orientation, such as that of a solar collector.


2017 ◽  
Vol 10 (12) ◽  
pp. 4965-4978 ◽  
Author(s):  
William Wandji Nyamsi ◽  
Mikko R. A. Pitkänen ◽  
Youva Aoun ◽  
Philippe Blanc ◽  
Anu Heikkilä ◽  
...  

Abstract. A new method has been developed to estimate the global and direct solar irradiance in the UV-A and UV-B at ground level in cloud-free conditions. It is based on a resampling technique applied to the results of the k-distribution method and the correlated-k approximation of Kato et al. (1999) over the UV band. Its inputs are the aerosol properties and total column ozone that are produced by the Copernicus Atmosphere Monitoring Service (CAMS). The estimates from this new method have been compared to instantaneous measurements of global UV irradiances made in cloud-free conditions at five stations at high latitudes in various climates. For the UV-A irradiance, the bias ranges between −0.8 W m−2 (−3 % of the mean of all data) and −0.2 W m−2 (−1 %). The root mean square error (RMSE) ranges from 1.1 W m−2 (6 %) to 1.9 W m−2 (9 %). The coefficient of determination R2 is greater than 0.98. The bias for UV-B is between −0.04 W m−2 (−4 %) and 0.08 W m−2 (+13 %) and the RMSE is 0.1 W m−2 (between 12 and 18 %). R2 ranges between 0.97 and 0.99. This work demonstrates the quality of the proposed method combined with the CAMS products. Improvements, especially in the modeling of the reflectivity of the Earth's surface in the UV region, are necessary prior to its inclusion into an operational tool.


2017 ◽  
Author(s):  
William Wandji Nyamsi ◽  
Mikko R. A. Pitkänen ◽  
Youva Aoun ◽  
Philippe Blanc ◽  
Anu Heikkilä ◽  
...  

Abstract. A new method has been developed to estimate the global and direct solar irradiance in the UV-A and UV-B, at ground level in cloud-free conditions. It is based on a resampling technique applied to the results of the k-distribution method and the correlated-k approximation of Kato et al. (1999) over the UV band. Its inputs are the aerosol properties, and total column ozone that are produced by the Copernicus Atmosphere Monitoring Service (CAMS). The estimates from this new method have been compared to instantaneous measurements of global UV irradiances made in cloud-free conditions at five stations at high latitudes in various climates. For the total or UV-A global irradiance, the bias ranges between −0.8 W m−2 (−3 % of the mean of all data) and −0.2 W m−2 (−1%). The root mean square error (RMSE) ranges from 1.1 W m−2 (6 %) to 1.9 W m−2 (9 %). The coefficient of determination R2 is greater than 0.98. The bias for UV-B is between −0.04 W m−2 (−4 %) and 0.08 W m−2 (+13 %) and the RMSE is 0.1 W m−2 (between 12 % and 18 %). R2 ranges between 0.97 and 0.99. This work demonstrates the quality of the proposed method combined with the CAMS products. Improvements, especially in the modelling of the reflectivity of the Earth's surface in the UV region, are necessary prior its inclusion into an operational tool.


2021 ◽  
Author(s):  
Kevin Lamy ◽  
Thierry Portafaix ◽  
Colette Brogniez ◽  
Kaisa Lakkala ◽  
Mikko R. A. Pitkänen ◽  
...  

Abstract. As part of the UV-Indien Network, 9 ground-based stations have been equipped with one spectroradiometer, radiometers and all-sky cameras. These stations are homogeneously distributed in 5 countries of the Western Indian Ocean region (Comoros, France, Madagascar, Mauritius and Seychelles), a part of the world where almost no measurements have been made so far. The main scientific objectives of this network are to study the annual and inter-annual variability of the ultraviolet (UV) radiation in this area, to validate the output of numerical models and satellite estimates of ground-based UV measurements, and to monitor UV radiation in the context of climate change and projected ozone depletion in this region. The first results are presented here for the oldest stations (Antananarivo, Anse Quitor, Mahé and Saint-Denis). Ground-based measurements of UV index (UVI) are compared against satellite estimates (Ozone Monitoring Instrument (OMI), the TROPOspheric Monitoring Instrument (TROPOMI), the Global Ozone Monitoring Experiment (GOME) and model forecasts of UVI (Tropospheric Emission Monitoring Internet Service (TEMIS) and Copernicus Atmospheric Monitoring Service (CAMS). The median relative differences between satellite or model estimates and ground-based measurements of clear-sky UVI range between −34.5 % and 15.8 %. Under clear skies, the smallest UVI median difference between the satellites or model estimates and the measurements of ground-based instruments is found to be 0.02 (TROPOMI), 0.04 (OMI), −0.1 (CAMS) and −0.4 (CAMS) at St-Denis, Antananarivo, Anse Quitor and Mahé respectively. The cloud fraction and UVI diurnal profile are calculated for these four stations. The mean UVI values at local solar noon range between 10 (Antananarivo, Anse Quitor and Saint-Denis) and 14 at Mahé. The mean UVIs in clear-sky conditions are higher than mean UVI in all-sky conditions, although it can still be noted that UVI maxima are higher for all-sky conditions than for clear sky conditions. This is the result of UVI enhancement induced by clouds, observed at these four stations. The greatest increase in UV radiation under cloudy conditions was observed at the Mahé station, with increases of more than 4. The data used in this study is available at https://doi.org/10.5281/zenodo.4572026 (Lamy and Portafaix, 2021).


Sign in / Sign up

Export Citation Format

Share Document