scholarly journals A new framework for probabilistic seasonal forecasts based on circulation type classifications and driven by an ensemble global model

2018 ◽  
Vol 15 ◽  
pp. 183-190 ◽  
Author(s):  
Gianni Messeri ◽  
Riccardo Benedetti ◽  
Alfonso Crisci ◽  
Bernardo Gozzini ◽  
Matteo Rossi ◽  
...  

Abstract. In the last years coupled atmospheric ocean climate models have remarkably improved medium range seasonal forecasts, especially on middle latitude areas such as Europe and the Mediterranean basin. In this study a new framework for medium range seasonal forecasts is proposed. It is based on circulation types extracted from long range global ensemble models and it aims at two goals: (i) an easier use of the information contained in the complex system of atmospheric circulations, through their reduction to a limited number of circulation types and (ii) the computation of high spatial resolution probabilistic forecasts for temperature and precipitation. The proposed framework could be also useful to lead predictions of weather-derived parameters, such as the risk of heavy rainfall, drought or heat waves, with important impacts on agriculture, water management and severe weather risk assessment. Operatively, starting from the ensemble predictions of mean sea level pressure and geopotential height at 500 hPa of the NCEP – CFSv2 long range forecasts, the third-quantiles probabilistic maps of 2 m temperature and precipitation are computed through a Bayesian approach by using E-OBS 0.25∘ gridded datasets. Two different classification schemes with nine classes were used: (i) Principal Component Transversal (PCT9), computed on mean sea level pressure and (ii) Simulated Annealing Clustering (SAN9), computed on geopotential height at 500 hPa. Both were chosen for their best fit concerning the ground-level precipitation and temperature stratification for the Italian peninsula. Following this approach an operative chain based on a very flexible and exportable method was implemented, applicable wherever spatially and temporally consistent datasets of weather observations are available. In this paper the model operative chain, some output examples and a first attempt of qualitative verification are shown. In particular three case studies (June 2003, February 2012 and July 2014) were examined, assuming that the ensemble seasonal model correctly predicts the circulation type occurrences. At least on this base, the framework here proposed has shown promising performance.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamish Steptoe ◽  
Nicholas Henry Savage ◽  
Saeed Sadri ◽  
Kate Salmon ◽  
Zubair Maalick ◽  
...  

AbstractHigh resolution simulations at 4.4 km and 1.5 km resolution have been performed for 12 historical tropical cyclones impacting Bangladesh. We use the European Centre for Medium-Range Weather Forecasting 5th generation Re-Analysis (ERA5) to provide a 9-member ensemble of initial and boundary conditions for the regional configuration of the Met Office Unified Model. The simulations are compared to the original ERA5 data and the International Best Track Archive for Climate Stewardship (IBTrACS) tropical cyclone database for wind speed, gust speed and mean sea-level pressure. The 4.4 km simulations show a typical increase in peak gust speed of 41 to 118 knots relative to ERA5, and a deepening of minimum mean sea-level pressure of up to −27 hPa, relative to ERA5 and IBTrACS data. The downscaled simulations compare more favourably with IBTrACS data than the ERA5 data suggesting tropical cyclone hazards in the ERA5 deterministic output may be underestimated. The dataset is freely available from 10.5281/zenodo.3600201.


2012 ◽  
Vol 140 (11) ◽  
pp. 3795-3802
Author(s):  
Emily Wallace ◽  
Alberto Arribas

Abstract Seasonal forecasts are most commonly issued as anomalies with respect to some multiyear reference period. However, different seasonal forecasting centers use different reference periods. This paper shows that for near-surface temperature, precipitation, and mean sea level pressure, over most regions of the world there is evidence that these differences between reference periods should not be ignored, especially when forecasters combine outputs from several prediction systems. Three methods are presented by which reference periods could be adjusted, and it is shown that the differences between the proposed methods are smaller than the errors that result from not correcting for different reference periods.


2008 ◽  
Vol 17 ◽  
pp. 5-11 ◽  
Author(s):  
E. E. Houssos ◽  
C. J. Lolis ◽  
A. Bartzokas

Abstract. The main synoptic conditions associated with extreme precipitation amounts in Greece are examined by using a multivariate statistical methodology comprising S-mode Factor Analysis and k-means Cluster Analysis. The following data were used : i) daily precipitation amounts (measured at 06:00 UTC) for the meteorological stations of Hellenikon (Athens), Thessaloniki (northern Greece) and Ioannina (western Greece) and ii) daily (18:00 UTC) 2.5×2.5 grid point values of 500 hPa geopotential height, mean sea-level pressure and 1000–500 hPa thickness at 273 grid points over Europe (10 W to 40 E and 30 N to 60 N), for the period 1970–2002. The dates corresponding to the upper 5% of the frequency distribution of precipitation are selected for each one of the three stations. In total, 369 dates are used, some of them being common among the three stations. The corresponding 369×273 data matrices of 500 hPa geopotential height, mean sea-level pressure and 1000–500 hPa thickness are constructed. The rows refer to the 369 extreme precipitation cases and the columns refer to the 273 grid points. The three matrices are unified into one 369×819 matrix. In order to reduce the dimensionality of the data set, S-mode Factor Analysis is applied to the unified matrix, revealing 7 factors accounting for 85% of the total variance. Finally, k-means Cluster Analysis is applied to the factor scores matrix, classifying the 369 cases into 9 clusters. For each one of the 9 clusters, the mean 18:00 UTC patterns of the above parameters are constructed and presented. These patterns correspond to the main distinct atmospheric circulation structures favoring extreme precipitation amounts in Greece. Most of the patterns are characterized by enhanced cyclonic activity over or near the Greek area. The differences among the 9 circulation structures refer mainly to the position and the intensity of the surface and the upper air synoptic systems involved. Some of the 9 synoptic conditions favor extreme precipitation amounts mainly at one or two of the three stations while some others equally affect the three stations.


Sign in / Sign up

Export Citation Format

Share Document