scholarly journals Mesoscale heat waves induced by orography

2008 ◽  
Vol 2 (1) ◽  
pp. 139-143 ◽  
Author(s):  
I. Gladich ◽  
I. Gallai ◽  
D. B. Giaiotti ◽  
Gp. Mordacchini ◽  
A. Palazzo ◽  
...  

Abstract. This work is devoted to the analysis of an unusual and sudden thermal fluctuation that interested portions of Friuli Venezia Giulia (Italy) during the night of 27 July 1983. The whole 1983 summer was extremely warm in Europe and in particular on the Italian peninsula, from the Alps down to Sicily. Nevertheless, the day of 27 July 1983 in Friuli Venezia Giulia deserves special attention because the observed maximum temperatures did not occur during day-time but during night-time (from 23:00 up to 24:00 LT, 21:00–22:00 UTC). Peaks of 34.8°C and values of relative humidity of the order of 28% were registered by the official network of weather stations. This event interested mainly the central-eastern part of the plain of Friuli Venezia Giulia, a few kilometers far from the Slovenian border and relieves. The thermal anomalies lasted up to an hour, then temperatures decreased toward values more usual for the climate of the month. The study of this event is carried out with the aid of the AR-WRF numerical atmospheric model, initialized through the ECMWF analysis. The numerical simulations highlight the important role played by orography, jointly with the peculiar thermal structure of the atmosphere, for the enhancing of the internal wave pattern over that area. According to the sensitivity studies realized, the amplification of the internal wave pattern might represent a possible explanation for that meteorological enigma.

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1584
Author(s):  
Ivana Tošić ◽  
Suzana Putniković ◽  
Milica Tošić ◽  
Irida Lazić

In this study, extremely warm and cold temperature events were examined based on daily maximum (Tx) and minimum (Tn) temperatures observed at 11 stations in Serbia during the period 1949–2018. Summer days (SU), warm days (Tx90), and heat waves (HWs) were calculated based on daily maximum temperatures, while frost days (FD) and cold nights (Tn10) were derived from daily minimum temperatures. Absolute maximum and minimum temperatures in Serbia rose but were statistically significant only for Tx in winter. Positive trends of summer and warm days, and negative trends of frost days and cold nights were found. A high number of warm events (SU, Tx90, and HWs) were recorded over the last 20 years. Multiple linear regression (MLR) models were applied to find the relationship between extreme temperature events and atmospheric circulation. Typical atmospheric circulation patterns, previously determined for Serbia, were used as predictor variables. It was found that MLR models gave the best results for Tx90, FD, and Tn10 in winter.


2019 ◽  
Vol 33 (3) ◽  
pp. 236-244
Author(s):  
Ju-Han Lee ◽  
Kwan-Woo Kim ◽  
Kwang-Jun Paik ◽  
Won-Cheol Koo ◽  
Yeong-Gyu Kim

Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 220 ◽  
Author(s):  
Patlakas ◽  
Stathopoulos ◽  
Flocas ◽  
Kalogeri ◽  
Kallos

The climate of the Arabian Peninsula is characterized by significant spatial and temporal variations, due to its complex topography and the large-scale atmospheric circulation. Furthermore, the role of dust in the formation of regional climate is considered to be crucial. In this work, the regional climatology for the Arabian Peninsula has been studied by employing a high resolution state of the art atmospheric model that included sophisticated physical parameterization schemes and online treatment of natural aerosol particles. The simulations covered a 30-year period (1986–2015) with a temporal resolution of 3 h and a spatial distance of 9 km. The main focus was given to the spatial and temporal variations of mean temperature and temperature extremes, wind speed and direction, and relative humidity. The results were evaluated using in situ measurements indicating a good agreement. An examination of possible climatic changes during the present climate was also performed through a comprehensive analysis of the trends of mean temperature and temperature extremes. The statistical significant trend values were overall positive and increased over the northwestern parts of the examined area. Similar spatial distributions were found for the daily minimum and maximum temperatures. Higher positive values emerged for the daily maxima.


Author(s):  
B. Arellano ◽  
J. Roca

Abstract. The urban climate literature has highlighted the remarkable prominence of nighttime UHI phenomenon. During nighttime the UHI effects become more evident due to the greater thermal inertia of the materials used in urban fabric. It is during the night when the heat accumulated in urban materials, especially in contexts of heat waves, can generate significant health risks. The low cooling capacity of urban construction materials negatively affects the comfort and the health of urban dwellers. However, and despite the great importance of night stress due to heat, the study of night UHIs is still underdeveloped. In this context, this paper aims to determine nighttime LST contrasting Landsat's very limited nighttime images with daytime ones. The example developed refers to heat wave situations during the summer 2015. The case study is the Metropolitan Area of Barcelona (35 municipalities, 636 km2, 3.3 million inhabitants).


Author(s):  
Valeria Di Biase ◽  
Giovanni Laneve

The paper aims at presenting the results obtained in the development of a system allowing the detection and monitoring of forest fires and the continuous comparison of their intensity when several events occur simultaneously, as usually happens in the European Mediterranean countries during the summer season. The system, called SFIDE (Satellite FIre DEtection), exploits a geostationary satellite sensor (SEVIRI on board of MSG satellite series). The algorithm was developed several years ago in the framework of a project (SIGRI) funded by the Italian Space Agency (ASI). This algorithm has been completely reviewed in order to enhance its efficiency by reducing false alarms rate preserving a high sensitivity. Due to the very low spatial resolution of SEVIRI images (4x4 km2 at Mediterranean latitude) the sensitivity of the algorithm should be very high to detect even small fires. The improvement of the algorithm has been obtained by: introducing the sun elevation angle in the computation of the preliminary thresholds to identify potential thermal anomalies (hot spots), introducing a contextual analysis in the detection of clouds and in the detection of night-time fires. The results of the algorithm have been validated in the Sardinia region by using ground true data provided by the regional Corpo Forestale e di Vigilanza Ambientale (CFVA). A significant reduction of the commission error (less than 10%) has been obtained with respect to the previous version of the algorithm and also with respect to fire-detection algorithms based on low earth orbit satellites.


2002 ◽  
Vol 28 (2) ◽  
pp. 962-966
Author(s):  
Werner Eckert ◽  
K. David Hambright ◽  
Yosef Z. Yacobi ◽  
Ilia Ostrovsky ◽  
Assaf Sukenik

2021 ◽  
Author(s):  
Marie Pontoppidan ◽  
Priscilla Mooney ◽  
Jerry Tjiputra

<p>Marine heat waves (MHW’s) exert a substantial impact on human life and ecosystems in the ocean. In the western part of the tropical Atlantic basin, coral reefs are impacted by such events, resulting in coral bleaching and subsequently loss of biodiversity. To mitigate future changes in MHW’s it is detrimental to increase our mechanistic understanding of these events, and this must be investigated on a local scale to understand the smaller scale driving processes of the heat waves, e.g. air-sea interactions, and the spatio-temporal extent on environmental drivers essential for the ecosystem processes.</p><p>Here we use a coupled ocean-atmosphere modelling system (COAWST), which includes the atmospheric model WRF and the ocean model ROMS (including the Fennel ecosystem module), to dynamically downscale an area consisting of the Caribbean Sea and the Gulf of Mexico. Our 12 km grid spacing resolves (at least partly) smaller scale phenomena and in combination with the coupling of the ocean and the atmospheric model, it ensures a skilled representation of the air-sea interactions which are important for MHW’s. We will show the results of this decadal climate simulation with regards to generation, evolution and persistence of the MHW’s.</p>


2021 ◽  
Author(s):  
Guilherme Correia ◽  
Ana Maria Ávila

<p>Extreme events such as heat waves have adverse effects on human health, especially on vulnerable groups, which can lead to deaths, thus they must be faced as a huge threat. Many studies show general mean temperature increase, notably, minimum temperatures. The scope of this work was to assess daily data of a historical series (1890-2018) available on the Instituto Agronômico de Campinas (IAC), in Campinas, using a suite of indices derived from daily temperature and formulated by the Expert Team on Climate Change Detection and Indices (ETCCDI) and evaluate trends. To compute the extreme indices RClimDex 1.1 was used. The significance test is based on a t  test, with a significance level of 95% (p-value<0,05). Temperature increase is undoubtedly through many indices, especially from 1980, as there is a continuous rise of the temperature. Annual mean maximum temperature rose from 26°C to 29°C, whereas many years consistently have more than 50 days with maximum temperatures as high as 31°C and more than 20% of the days within a year are beyond the 90th percentile of the daily maximum temperatures. Annual mean minimum temperature rose from 14°C to 18°C, whereas many years consistently have more than 150 days with minimum temperatures as high as 18°C and more than 30% of the days within a year are beyond the 90th percentile of the daily minimum temperatures. Therefore, results indicate the increase of minimum temperature is greater than the increase of maximum temperatures.</p>


2021 ◽  
Author(s):  
Andrea Schito ◽  
Achraf Atouabat ◽  
Rocco Calcagni ◽  
Sveva Corrado ◽  
David Muirhead ◽  
...  

<p>The correct assessment of maximum temperatures experienced by rocks is an essential tool to unravel the evolution of the thermal structure of the crust during the main phases of an orogenesis. Given to broad P-T stability field of classical metamorphic mineralogical indicators, maximum temperatures derived from the analyses of carbonaceous material dispersed in rocks by means of Raman spectroscopy has shown to be a suitable alternative to classical geothermometer. Initially developed for high metamorphic rocks the use of this tools has recently been extended also at lower metamorphic degree and diagenesis. This allowed us to extend the analyses of paleotemperatures experienced by rocks from Ghomarides and Sebtides from the Internal Rif in North Morocco with respect to previous works. Ghomaride and Sebtides in this portion of the Rif-Betic-Tell chain, represent respectively the upper and lower plates of a metamorphic core complex  and are composed, the first, by Paleozoic rocks with a partially preserved Mesozoic-Cenozoic cover and the second by lower Paleozoic to Triassic deep-crustal mica-schists, migmatites and granulites associated with peridotites (Beni Bousera complex).</p><p>Our data suggest that the uppermost Tiszgarine Unit of the Upper Sebtides experienced warmer condition than previously observed. Moreover, we calculate the maximum temperatures experienced by the Ghomarides  during both the Eo and Late Variscan cycles showing that differences in temperature exist among the vary units that compose the complex. Finally, in the southern area our data suggest a less severe alpine heating related to the emplacement of the Beni Bousera peridotite, than previously calculated.</p>


2020 ◽  
Author(s):  
Rémi Leprêtre ◽  
Andrea Schito ◽  
Rachid Ouchaou ◽  
Mohamed El Houicha ◽  
Francis Chopin

<p>The Variscan belt in NW Africa is an intracontinental belt, resulting from far-field compressional stress during the closure of the Rheic Ocean between the Late Carboniferous and the Early Permian. In the classical view, this orogen building was preceded by a pre-orogenic stage, namely the Eo-variscan stage, suggested to have occurred at the Late Devonian-Early Carboniferous transition.</p><p>This view is now questioned, for multiple reasons. A first structural reason aims at re-interpreting the so-called Eovariscan features as extensional ones. Indeed, although many structures have been described, their integration into a compressional setting is not straightforward. A second reason is geodynamical, since this peculiar stage is bracketed between two general extensional phases recorded at the scale of NW Africa, and this leaves a very short time interval to proceed to a compressional phase that is geodynamically not integrated until today. At last, a third reason stems from early findings from metamorphic works in the Western Meseta that demonstrated the occurrences of previously unnoticed high geothermal gradients inside numerous Early Carboniferous basins (Chopin et al., 2014 ; Wernert et al., 2016 ; Delchini et al., 2018 ; Lahfid et al., 2019).</p><p>In this work, we sampled the Khenifra Basin within the easternmost part of the Western Meseta, where the Eovariscan deformation was defined (Allary et al., 1972). We carried on structural observations into the basement and sampled both the Ordovician basement and the Middle(?)-Late Visean series of the basin, which is thought the be extensional. Maximum temperatures reached by the 77 sampled rocks were obtained from the analysis of organic matter with the use of the Raman spectroscopy. The examination of this new dataset demonstrates that the Ordovician series acquired temperatures through a single event, consistently with their common record of the Eovariscan deformation. Instead, the unconformable Visean series on top of the basement show a pronounced basinal asymmetry, from low temperatures (< 160°C) to temperatures equivalent to the Ordovician ones (> 250°C). The Visean series do not record the Eovariscan deformation, and their thermal structure was acquired before the Variscan event, regarding their repartition within the basin. The examination of the different hypotheses for the timing of the maximal temperature acquisition (Variscan, compressional Eovariscan and extensional Eovariscan) leads to a single option only compatible with an extensional Eovariscan context.</p><p>The renewal on the knowledge about the early stages of the Variscan orogeny in NW Africa allows us to consider a Pyrenean-like model for the formation of this intraplate belt, resulting from the inversion of hot Early Carboniferous rifted basins.</p>


Sign in / Sign up

Export Citation Format

Share Document