scholarly journals Colloid-bound and dissolved phosphorus species in topsoil water extracts along a grassland transect from Cambisol to Stagnosol

2017 ◽  
Vol 14 (5) ◽  
pp. 1153-1164 ◽  
Author(s):  
Xiaoqian Jiang ◽  
Roland Bol ◽  
Barbara J. Cade-Menun ◽  
Volker Nischwitz ◽  
Sabine Willbold ◽  
...  

Abstract. Phosphorus (P) species in colloidal and dissolved soil fractions may have different distributions. To understand which P species are potentially involved, we obtained water extracts from the surface soils of a gradient from Cambisol, Stagnic Cambisol to Stagnosol from temperate grassland in Germany. These were filtered to  <  450 nm, and divided into three procedurally defined fractions: small-sized colloids (20–450 nm), nano-sized colloids (1–20 nm), and dissolved P (<  1 nm), using asymmetric flow field-flow fractionation (AF4), as well as filtration for solution 31P-nuclear magnetic resonance (NMR) spectroscopy. The total P of soil water extracts increased in the order Cambisol  <  Stagnic Cambisol  <  Stagnosol due to increasing contributions from the dissolved P fraction. Associations of C–Fe/Al–PO43−/pyrophosphate were absent in nano-sized (1–20 nm) colloids from the Cambisol but not in the Stagnosol. The 31P-NMR results indicated that this was accompanied by elevated portions of organic P in the order Cambisol  >  Stagnic Cambisol  >  Stagnosol. Across all soil types, elevated proportions of inositol hexakisphosphate (IHP) species (e.g., myo-, scyllo- and D-chiro-IHP) were associated with soil mineral particles (i.e., bulk soil and small-sized soil colloids), whereas other orthophosphate monoesters and phosphonates were found in the dissolved P fraction. We conclude that P species composition varies among colloidal and dissolved soil fractions after characterization using advanced techniques, i.e., AF4 and NMR. Furthermore, stagnic properties affect P speciation and availability by potentially releasing dissolved inorganic and ester-bound P forms as well as nano-sized organic matter–Fe/Al–P colloids.

2016 ◽  
Author(s):  
Xiaoqian Jiang ◽  
Roland Bol ◽  
Barbara J. Cade-Menun ◽  
Volker Nischwitz ◽  
Sabine Willbold ◽  
...  

Abstract. Stagnant water conditions may release phosphorus (P) in soil solution that was formerly bound to Fe oxides. To understand which P species are potentially involved, we obtained water extracts from the surface soils of a gradient from Cambisol, Stagnic Cambisol to Stagnosol from temperate grassland, Germany. These were filtered to Stagnosol. Across all soil types, elevated proportions of inositol hexakisphosphate species (e.g. myo-, scyllo-, and D-chiro-IHP) were associated with soil mineral particles (i.e. bulk soil and small-sized soil colloids) whereas other orthophosphate monoesters and phosphonates were found in the ‘dissolved’ P fraction. We conclude that stagnic properties affect P speciation and availability by potentially releasing dissolved inorganic and ester-bound P forms as well as nano-sized organic matter-Fe/Al-P colloids.


2016 ◽  
Author(s):  
Xiaoqian Jiang ◽  
Roland Bol ◽  
Barbara J. Cade-Menun ◽  
Volker Nischwitz ◽  
Sabine Willbold ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Qing Xu ◽  
Xiaoping Yu ◽  
Yafei Guo ◽  
Tianlong Deng ◽  
Yu-Wei Chen ◽  
...  

Overlying sediment and pore waters were collected in summer and winter at upstream (Jintang) and downstream (Neijiang) sites of the Tuohe River, which is one of the five largest tributaries of the Yangtze River in China. Phosphorus species, including soluble reactive phosphorus (SRP), soluble unreactive phosphorus (SUP), and total dissolved phosphorus (TDP), and some diagenetic constituents including dissolved Fe(II), Mn(II), and sulfide in overlying and pore waters, were measured systematically. The seasonal variations and vertical distributions of phosphorus species in overlying and pore waters at both sampling sites were obtained to elucidate some aspects of the transport and transformations of phosphorus. Based on the profiles of pore and overlying waters as well as the TDN/TDP data during an algal bloom in 2007, it was clearly demonstrated that phosphorus was the main factor limiting the phytoplankton growth in the Tuohe River.


2015 ◽  
Vol 12 (21) ◽  
pp. 6443-6452 ◽  
Author(s):  
X. Jiang ◽  
R. Bol ◽  
S. Willbold ◽  
H. Vereecken ◽  
E. Klumpp

Abstract. To maximize crop productivity fertilizer P is generally applied to arable soils, a significant proportion of which becomes stabilized by mineral components and in part subsequently becomes unavailable to plants. However, little is known about the relative contributions of the different organic and inorganic P bound to Fe/Al oxides in the smaller soil particles. Alkaline (NaOH–Na2EDTA) extraction with solution 31P-nuclear magnetic resonance (31P-NMR) spectroscopy is considered a reliable method for extracting and quantifying organic P and (some) inorganic P. However, any so-called residual P after the alkaline extraction has remained unidentified. Therefore, in the present study, the amorphous (a) and crystalline (c) Fe/Al oxide minerals and related P in soil aggregate-sized fractions (> 20, 2–20, 0.45–2 and < 0.45 μm) were specifically extracted by oxalate (a-Fe/Al oxides) and dithionite–citrate–bicarbonate (DCB, both a- and c-Fe/Al oxides). These soil aggregate-sized fractions with and without the oxalate and DCB pre-treatments were then sequentially extracted by alkaline extraction prior to solution 31P-NMR spectroscopy. This was done to quantify the P associated with a- and c-Fe/Al oxides in both alkaline extraction and the residual P of different soil aggregate-sized fractions. The results showed that overall P contents increased with decreasing size of the soil aggregate-sized fractions. However, the relative distribution and speciation of varying P forms were found to be independent of soil aggregate-size. The majority of alkaline-extractable P was in the a-Fe/Al oxide fraction (42–47 % of total P), most of which was ortho-phosphate (36–41 % of total P). Furthermore, still significant amounts of particularly monoester P were bound to these oxides. Intriguingly, however, Fe/Al oxides were not the main bonding sites for pyrophosphate. Residual P contained similar amounts of total P associated with both a- (11–15 % of total P) and c-Fe oxides (7–13 % of total P) in various aggregate-sized fractions, suggesting that it was likely occluded within the a- and c-Fe oxides in soil. This implies that, with the dissolution of Fe oxides, this P may be released and thus available for plants and microbial communities.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3960
Author(s):  
Albert Gargallo-Garriga ◽  
Jordi Sardans ◽  
Joan Llusià ◽  
Guille Peguero ◽  
Dolores Asensio ◽  
...  

Productivity of tropical lowland moist forests is often limited by availability and functional allocation of phosphorus (P) that drives competition among tree species and becomes a key factor in determining forestall community diversity. We used non-target 31P-NMR metabolic profiling to study the foliar P-metabolism of trees of a French Guiana rainforest. The objective was to test the hypotheses that P-use is species-specific, and that species diversity relates to species P-use and concentrations of P-containing compounds, including inorganic phosphates, orthophosphate monoesters and diesters, phosphonates and organic polyphosphates. We found that tree species explained the 59% of variance in 31P-NMR metabolite profiling of leaves. A principal component analysis showed that tree species were separated along PC 1 and PC 2 of detected P-containing compounds, which represented a continuum going from high concentrations of metabolites related to non-active P and P-storage, low total P concentrations and high N:P ratios, to high concentrations of P-containing metabolites related to energy and anabolic metabolism, high total P concentrations and low N:P ratios. These results highlight the species-specific use of P and the existence of species-specific P-use niches that are driven by the distinct species-specific position in a continuum in the P-allocation from P-storage compounds to P-containing molecules related to energy and anabolic metabolism.


2015 ◽  
Vol 12 (2) ◽  
pp. 623-635 ◽  
Author(s):  
S. Blain ◽  
J. Capparos ◽  
A. Guéneuguès ◽  
I. Obernosterer ◽  
L. Oriol

Abstract. During KEOPS2 (Kerguelen Ocean and Plateau Compared Study 2), we determined dissolved inorganic and organic nitrogen and phosphorus species in the naturally fertilized region of Kerguelen Island (Southern Ocean). Above 150 m, stations were clearly separated by the polar front (PF), with concentrations of NO3-, NO2- and PO43- overall lower north of the PF than south. Though less pronounced, a similar trend was detectable for dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). At all stations offshore and above the plateau, a subsurface maximum of NH4+ was observed between 50 and 150 m. We examined nutrient stoichiometry by calculating the linear combination N* = [NO3-]-16 [PO43-]. The majority of stations and depths revealed N* close to −3 μM; however, for surface waters north of the PF, N* increased up to 6 μM. This suggests a preferential uptake of PO43- versus NO3- by fast-growing diatoms. Using the tracer TNxs = [TDN]-16[TDP] (TDN, total dissolved nitrogen; TDP, total dissolved phosphorus) revealed that the dissolved organic fraction significantly contributed to changes in TNxs. TNxs values were negative for most stations and depths, and relatively constant in the 0–500 m layer. As for N*, the stations north of the PF had higher TNxs in the 0–100 m layer. We discuss this stoichiometric anomaly with respect to possible external sources and sinks of N and P. Additional data collected in February 2013 at two sites revealed the occurrence of a subsurface minimum of N* located just below the pycnocline, which denotes a layer where remineralization of particulate organic matter with low N : P ratio P, possibly associated with preferential remineralization of P versus N, persists throughout the season.


2013 ◽  
Vol 60 ◽  
pp. 336-343 ◽  
Author(s):  
Li Zhang ◽  
Shengrui Wang ◽  
Lixin Jiao ◽  
Zhaokui Ni ◽  
Haiyan Xi ◽  
...  

2014 ◽  
Vol 955-959 ◽  
pp. 3529-3539
Author(s):  
Yi Min Zhang ◽  
Jing Chen ◽  
Yue Xiang Gao ◽  
Long Mian Wang ◽  
Fei Yang

Organic phosphorus in sediments of lake Gehu in China was investigated and researched via two methods: chemical fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Results of chemical fractionation suggested that concentration of each organic phosphorus species in different sediments may varied highly since different condition, but showed a rank trend : residual Po> HCl-Po> Fulvic-Po> Humic-Po>NaHCO3-Po. Labile and moderately labile Po , regarded as potential P , contributed to 33.6% to 64.6% relative to total Po, which can be degraded for phytoplankton. 31P-NMR results suggested that the rank order of P species presented in NaOH-EDTA extractants of sediments: orthophosphate> monoester-P> DNA-P> pyrophosphate-P, and polyphosphate and phosphonate were almost not detected.


Sign in / Sign up

Export Citation Format

Share Document