scholarly journals Distributions and stoichiometry of dissolved nitrogen and phosphorus in the iron-fertilized region near Kerguelen (Southern Ocean)

2015 ◽  
Vol 12 (2) ◽  
pp. 623-635 ◽  
Author(s):  
S. Blain ◽  
J. Capparos ◽  
A. Guéneuguès ◽  
I. Obernosterer ◽  
L. Oriol

Abstract. During KEOPS2 (Kerguelen Ocean and Plateau Compared Study 2), we determined dissolved inorganic and organic nitrogen and phosphorus species in the naturally fertilized region of Kerguelen Island (Southern Ocean). Above 150 m, stations were clearly separated by the polar front (PF), with concentrations of NO3-, NO2- and PO43- overall lower north of the PF than south. Though less pronounced, a similar trend was detectable for dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). At all stations offshore and above the plateau, a subsurface maximum of NH4+ was observed between 50 and 150 m. We examined nutrient stoichiometry by calculating the linear combination N* = [NO3-]-16 [PO43-]. The majority of stations and depths revealed N* close to −3 μM; however, for surface waters north of the PF, N* increased up to 6 μM. This suggests a preferential uptake of PO43- versus NO3- by fast-growing diatoms. Using the tracer TNxs = [TDN]-16[TDP] (TDN, total dissolved nitrogen; TDP, total dissolved phosphorus) revealed that the dissolved organic fraction significantly contributed to changes in TNxs. TNxs values were negative for most stations and depths, and relatively constant in the 0–500 m layer. As for N*, the stations north of the PF had higher TNxs in the 0–100 m layer. We discuss this stoichiometric anomaly with respect to possible external sources and sinks of N and P. Additional data collected in February 2013 at two sites revealed the occurrence of a subsurface minimum of N* located just below the pycnocline, which denotes a layer where remineralization of particulate organic matter with low N : P ratio P, possibly associated with preferential remineralization of P versus N, persists throughout the season.

2014 ◽  
Vol 11 (6) ◽  
pp. 9949-9977 ◽  
Author(s):  
S. Blain ◽  
J. Capparos ◽  
A. Guéneuguès ◽  
I. Obernosterer ◽  
L. Oriol

Abstract. During KEOPS2 (Kerguelen Ocean and Plateau Compared Study 2), we determined dissolved inorganic and organic nitrogen and phosphorus species in the naturally fertilized region of Kerguelen Island (Southern Ocean). Above 150 m, stations were clearly separated by the Polar Front (PF), with concentrations of NO3–, NO2– and PO43– overall lower north than south of the PF. Though less pronounced, a similar trend was detectable for dissolved organic nitrogen (DON) and phosphorus (DOP). At all stations offshore and above the plateau, a subsurface maximum of NH4+ was observed between 50 and 150 m. We examined nutrient stoichiometry by calculating the linear combination N* = [NO3–] − 16[PO43– ]. The majority of stations and depths revealed N* close to −3 μM, however, for surface waters north of the PF N* increased up to 6 μM. This suggests a preferential uptake of PO43– vs. NO3– by fast growing diatoms. Using the tracer TNxs = [TDN] − 16[TDP] revealed that the dissolved organic fraction significantly contributed to changes in TNxs. TNxs were negative for most stations and depths, and relatively constant in the layer 0–500 m. As for N*, the stations north of the PF had higher TNxs in the layer 0–100 m. We discuss this stoichiometric anomaly with respect to possible external sources and sinks of N and P. Additional data collected in February 2013 at two sites revealed the occurrence of a subsurface of N* located just below the pycnocline that denotes a~layer where preferential remineralization of P vs. N persists throughout the season.


1971 ◽  
Vol 28 (2) ◽  
pp. 171-187 ◽  
Author(s):  
F. A. J. Armstrong ◽  
D. W. Schindler

Water analyses in 1968 and 1969 from 40 small lakes within a small area of the Canadian Shield in northwestern Ontario gave mean values for Ca, Na, Mg, and K of 1.6, 0.9, 0.9, and 0.4 mg/liter with Ca > Na > Mg > K on a molar basis. HCO3, SO4, and Cl (on a smaller number of samples) were 4.1, 3.0, and 1.4 mg/liter. Total CO2 was variable in the range 0.3–12.0 mg/liter. Specific conductance was in the range 10–35 μmho/cm at 25 C and pH 5.4–7.5. Color was < 5–150 Hazen units, and plant pigments (as chlorophyll a) < 1–21 μg/liter. Total dissolved nitrogen was in the range 110–300 mg N/liter and total dissolved phosphorus 3–20 μg P/liter. NO3-N and PO4-P were often undetectable in summer, and reached winter maxima around 100 and 10 μg/liter.Total dissolved nitrogen and phosphorus contents of five lakes were computed at the beginning and end of periods of several weeks during summer stagnation. Changes were negligibly small in three of the deeper lakes, but the two shallowest showed increases of 0.22 and 0.62 g N/m2 and 0.03 and 0.13 g P/m2. Analyses of precipitation and stream waters were used, with stream flow rates, to calculate input and output of nutrients from four of these lakes during the same periods. Retention of nutrients had occurred in all, and it was concluded that in the two deeper lakes nutrients had been lost to the sediments, whereas in the two shallower ones the increases in dissolved nutrients found were derived from the sediments.Analyses of 33 other Canadian Shield lake areas and of 13 other dilute lakes in other regions are tabulated. Comparison with the Experimental Lakes Area (ELA) lakes shows that the latter are more dilute than any in the Shield area except for some in the Northwest Territories, and much more dilute than any others in the world except for some alpine lakes in California.


2017 ◽  
Vol 14 (6) ◽  
pp. 1527-1539 ◽  
Author(s):  
Ana R. A. Soares ◽  
Ann-Kristin Bergström ◽  
Ryan A. Sponseller ◽  
Joanna M. Moberg ◽  
Reiner Giesler ◽  
...  

Abstract. Boreal lake and river ecosystems receive large quantities of organic nutrients and carbon (C) from their catchments. How bacterioplankton respond to these inputs is not well understood, in part because we base our understanding and predictions on total pools, yet we know little about the stoichiometry of bioavailable elements within organic matter. We designed bioassays with the purpose of exhausting the pools of readily bioavailable dissolved organic carbon (BDOC), bioavailable dissolved nitrogen (BDN), and bioavailable dissolved phosphorus (BDP) as fast as possible. Applying the method in four boreal lakes at base-flow conditions yielded concentrations of bioavailable resources in the range 105–693 µg C L−1 for BDOC (2 % of initial total DOC), 24–288 µg N L−1 for BDN (31 % of initial total dissolved nitrogen), and 0.2–17 µg P L−1 for BDP (49 % of initial total dissolved phosphorus). Thus, relative bioavailability increased from carbon (C) to nitrogen (N) to phosphorus (P). We show that the main fraction of bioavailable nutrients is organic, representing 80 % of BDN and 61 % of BDP. In addition, we demonstrate that total C : N and C : P ratios are as much as 13-fold higher than C : N and C : P ratios for bioavailable resource fractions. Further, by applying additional bioavailability measurements to seven widely distributed rivers, we provide support for a general pattern of relatively high bioavailability of P and N in relation to C. Altogether, our findings underscore the poor availability of C for support of bacterial metabolism in boreal C-rich freshwaters, and suggest that these ecosystems are very sensitive to increased input of bioavailable DOC.


2016 ◽  
Author(s):  
Ana R. A. Soares ◽  
Ann-Kristin Bergström ◽  
Ryan A. Sponseller ◽  
Joanna M. Moberg ◽  
Reiner Giesler ◽  
...  

Abstract. Boreal lake and river ecosystems receive large quantities of organic nutrients and carbon (C) from their 10 catchments. How bacterioplankton respond to these inputs is not well understood, in part because we base our understanding and predictions on "total pools", yet we know little about the stoichiometry of bioavailable elements within the organic matter. We designed bioassays with the purpose to exhaust the pools of readily bioavailable dissolved organic carbon (BDOC), bioavailable dissolved nitrogen (BDN) and bioavailable dissolved phosphorus (BDP) as fast as possible. Applying the method in four boreal lakes at base flow conditions yielded concentrations of bioavailable resources that ranged from 105–693 μg C L−1 for BDOC (2 % of total DOC), 24–288 μg N L−1 for BDN (31 % of total dissolved nitrogen) and 0.2–17 μg P L−1 for BDP (49 % of total dissolved phosphorus). Thus, relative bioavailability increased from carbon (C) to nitrogen (N) to phosphorus (P). We show that the main part of bioavailable nutrient resources is organic, representing 80 % of BDN and 61 % of BDP. In addition, we demonstrate that total C : N and C : P ratios are as much as 13-fold higher than C : N and C : P ratios for bioavailable resource fractions. Further, by applying additional bioavailability measurements to seven widely 20 distributed rivers, we provide support for a general pattern of relatively high bioavailability of P and N in relation to C. Altogether, our findings underscore the role of C as limiting factor for bacterial growth in boreal C-rich freshwaters, and suggest that these ecosystems are very sensitive to increased input of bioavailable DOC.


Author(s):  
Xiaofan Yang ◽  
Xueyu Wei ◽  
Xiaoping Xu ◽  
Yu Zhang ◽  
Jincheng Li ◽  
...  

KCl-extractable sediment dissolved organic nitrogen (KS-DON) extracted from sediments near drinking water intakes of six drinking water sources in Taihu Lake in China was partitioned into hydrophobic and hydrophilic fractions and high/low molecular weight fractions. The results showed that the total dissolved nitrogen (TDN) contents of the extracts ranged from 67.78 to 128.27 mg/kg. KS-DON was the main TDN species, accounting for more than 50%, with NH4+-N and NO3−-N averaging 30% and 20%, respectively. The molecular weight fractions of <1 kDa accounted for almost half of KS-DON. Hydrophilic compounds accounted for more than 75% of KS-DON. Three fluorescence peaks were identified: soluble microbial byproducts (A); protein-like substances (B); and humic acid-like substances (C). It is concluded that the KS-DON in Taihu Lake sources has higher bioavailability and higher risk of endogenous release. Ecological dredging and establishment of constructed wetlands are possible measures to reduce the release of endogenous nitrogen.


2006 ◽  
Vol 63 (5) ◽  
pp. 433-438 ◽  
Author(s):  
Gustavo Gonzaga Henry-Silva ◽  
Antonio Fernando Monteiro Camargo

The effluents from fish farming can increase the quantity of suspended solids and promote the enrichment of nitrogen and phosphorus in aquatic ecosystems. In this context, the aim of this work was to evaluate the efficiency of three species of floating aquatic macrophytes (Eichhornia crassipes, Pistia stratiotes and Salvinia molesta) to treat effluents from Nile tilapia culture ponds. The effluent originated from a 1,000-m² pond stocked with 2,000 male Nile tilapia Oreochromis niloticus. The treatment systems consisted of 12 experimental tanks, three tanks for each macrophyte species, and three control tanks (without plants). Water samples were collected from the: (i) fish pond source water, (ii) effluent from fish pond and (iii) effluents from the treatment tanks. The following water variables were evaluated: turbidity, total and dissolved nitrogen, ammoniacal-N, nitrate-N, nitrite-N, total phosphorus and dissolved phosphorus. E. crassipes and P. stratiotes were more efficient in total phosphorus removal (82.0% and 83.3%, respectively) and total nitrogen removal (46.1% and 43.9%, respectively) than the S. molesta (72.1% total phosphorus and 42.7% total nitrogen) and the control (50.3% total phosphorus and 22.8% total nitrogen), indicating that the treated effluents may be reused in the aquaculture activity.


2012 ◽  
Vol 9 (6) ◽  
pp. 7465-7497 ◽  
Author(s):  
T. Wohlfart ◽  
J.-F. Exbrayat ◽  
K. Schelde ◽  
B. Christen ◽  
T. Dalgaard ◽  
...  

Abstract. The surrounding landscape of a stream has crucial impacts on the aquatic environment. This study pictures the hydro-biogeochemical situation of the Tyrebaekken creek catchment in central Jutland, Denmark. The intensively managed agricultural landscape is dominated by rotational croplands. One northern and one southern stream run through the catchment before converging to form a second order brook. The small catchments mainly consist of sandy soil types besides organic soils along the riparian zone of the streams. The aim of the study was to characterise the relative influence of soil type and land use on stream water quality. Nine snapshot sampling campaigns were undertaken during the growing season of 2009. On each sampling day, 20 points along the stream were sampled as well as eight drain outlets and two groundwater wells. Total dissolved nitrogen, nitrate, ammonium nitrogen and dissolved organic carbon (DOC) concentrations were measured and dissolved organic nitrogen (DON) was calculated for each grabbed sample. Electro-conductivity, pH and flow velocity were measured during sampling. Statistical analyses showed significant differences between the northern, southern and converged stream parts, especially for nitrate concentrations with average values of 9.6 mg N l−1, 1.4 mg N l−1 and 3.0 mg N l−1, respectively. Furthermore, throughout the sampling period DON concentrations increased from 0.1 mg N l−1 to 2.8 mg N l−1 and from 0.1 mg N l−1 to 0.8 mg N l−1in the northern and southern streams, respectively. This corresponded to a contribution of up to 81% to total dissolved nitrogen. Multiple-linear regression analyses performed between chemical data and landscape charateristics showed a significant negative influence of organic soils on instream N concentrations and corresponding losses in spite of their overall minor share of the agricultural land (12.9%). On the other hand, organic soil frequency was positively correlated to the corresponding dissolved organic carbon concentrations. Croplands also had a significant influence but with weaker correlations. For our case study we conclude that soil types and corresponding biogeochemical properties have a major influence on stream water chemistry. Meanwhile, the contribution of dissolved organic nitrogen to the total nitrogen budget was substantial in this agricultural dominated landscape.


Sign in / Sign up

Export Citation Format

Share Document