scholarly journals Seasonal Variations of Phosphorus Species in the Overlying and Pore Waters of the Tuohe River, China

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Qing Xu ◽  
Xiaoping Yu ◽  
Yafei Guo ◽  
Tianlong Deng ◽  
Yu-Wei Chen ◽  
...  

Overlying sediment and pore waters were collected in summer and winter at upstream (Jintang) and downstream (Neijiang) sites of the Tuohe River, which is one of the five largest tributaries of the Yangtze River in China. Phosphorus species, including soluble reactive phosphorus (SRP), soluble unreactive phosphorus (SUP), and total dissolved phosphorus (TDP), and some diagenetic constituents including dissolved Fe(II), Mn(II), and sulfide in overlying and pore waters, were measured systematically. The seasonal variations and vertical distributions of phosphorus species in overlying and pore waters at both sampling sites were obtained to elucidate some aspects of the transport and transformations of phosphorus. Based on the profiles of pore and overlying waters as well as the TDN/TDP data during an algal bloom in 2007, it was clearly demonstrated that phosphorus was the main factor limiting the phytoplankton growth in the Tuohe River.

2021 ◽  
Vol 9 (6) ◽  
pp. 626
Author(s):  
Michael S. Owens ◽  
Stephen P. Kelly ◽  
Thomas A. Frankovich ◽  
David T. Rudnick ◽  
James W. Fourqurean ◽  
...  

We estimated the net exchange of nitrogen and phosphorus species using core incubations under light and dark conditions in estuarine lakes that are the aquatic interface between the freshwater Everglades and marine Florida Bay. These lakes and adjacent shallow water Florida Bay environments are sites where the restoration of hydrological flows will likely have the largest impact on salinity. Sediment respiration, measured by oxygen uptake, averaged (±S.D.) −2400 ± 1300, −300 ± 1000, and 1900 ± 1400 μmol m−2 h−1 for dark incubations, light incubations, and gross photosynthesis estimates, respectively, with dark incubations consistent with oxygen uptake measured by microelectrode profiles. Although most fluxes of soluble reactive phosphorus, nitrate, and N2–N were low under both light and dark incubation conditions, we observed a number of very high efflux events of NH4+ during dark incubations. A significant decrease in NH4+flux was observed in the light. The largest differences between light and dark effluxes of NH4+ occurred in lakes during periods of low coverage of the aquatic macrophyte Chara hornemannii Wallman, with NH4+ effluxes > 200 μmol m−2 h−1. Increasing freshwater flow from the Everglades is expected to expand lower salinity environments suitable for Chara, and therefore, diminish the sediment NH4+ effluxes that may fuel algal blooms.


Crustaceana ◽  
2012 ◽  
Vol 85 (4-5) ◽  
pp. 447-462 ◽  
Author(s):  
Ahmet Bozkurt ◽  
Kemal Çelik ◽  
Tuğba Ongun Sevindik

Seasonal variations in the body length of zooplankton were studied in relation to water temperature, nitrate (NO3), soluble reactive phosphorus (SRP), total chlorophyll, Secchi disk depth, pH, conductivity, and oxidation-reduction potential (ORP) in a mesotrophic (Ikizcetepeler) and a eutrophic (Çaygören) reservoir from February 2007 to March 2008. During the study, the body lengths of a total of 7590 zooplankton specimens (1110 rotifers, 3270 cladocerans, and 3210 copepods) were measured. The length of the majority of the species was significantly smaller in summer than in winter, fall, and spring, including that of the most dominant species, Asplanchna priodonta, Daphnia galeata, Daphnia longispina, Diaphanosoma brachyurum, Bosmina longirostris, Leptodora kindtii, Ceriodaphnia pulchella, Cyclops vicinus, Metacyclops gracilis, and Acanthocyclops robustus (F > 5, ). Correspondence analysis (CA) showed that the body length of the zooplankton studied was inversely related to water temperature, whereas it was positively related to ORP and pH. The results of our study suggest that, although nutrients (NO3 and SRP) apparently have an effect on zooplankton body length only in the mesotrophic reservoir, temperature influences the body length in both the mesotrophic and the eutrophic reservoir.


2016 ◽  
Author(s):  
R. Dupas ◽  
J. Salmon-Monviola ◽  
K. Beven ◽  
P. Durand ◽  
P. M. Haygarth ◽  
...  

Abstract. We developed a parsimonious topography-based hydrologic model coupled with a soil biogeochemistry sub-model in order to improve understanding and prediction of Soluble Reactive Phosphorus (SRP) transfer in agricultural headwater catchments. The model structure aims to capture the dominant hydrological and biogeochemical processes identified from multiscale observations in a research catchment (Kervidy-Naizin, 5 km2). Groundwater fluctuations, responsible for the connection of soil SRP production zones to the stream, were simulated with a fully-distributed hydrologic model at 20 m resolution. The spatial variability of the soil phosphorus status and the temporal variability of soil moisture and temperature, which had previously been identified as key controlling factor of SRP solubilisation in soils, were included as part of an empirical soil biogeochemistry sub-model. The modelling approach included an analysis of the information contained in the calibration data and propagation of uncertainty in model predictions using a GLUE "limits of acceptability" framework. Overall, the model appeared to perform well given the uncertainty in the observational data, with a Nash–Sutcliffe efficiency on daily SRP loads between 0.1 and 0.8 for acceptable models. The role of hydrological connectivity via groundwater fluctuation, and the role of increased SRP solubilisation following dry/hot periods were captured well. We conclude that in the absence of near continuous monitoring, the amount of information contained in the data is limited hence parsimonious models are more relevant than highly parameterised models. An analysis of uncertainty in the data is recommended for model calibration in order to provide reliable predictions.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1947
Author(s):  
Ling Su ◽  
Chen Zhong ◽  
Lei Gan ◽  
Xiaolin He ◽  
Jinlei Yu ◽  
...  

The application of lanthanum modified bentonite (Phoslock®) and polyaluminium chloride (PAC) is popular in the restoration of European temperate lakes; however, the effects of the application on the concentrations of phosphorus (P) in both the water and the sediments have been poorly evaluated to date. We studied the effects of the application of Phoslock® + PAC on the concentrations of total phosphorus (TP), particulate phosphorus (PP), soluble reactive phosphorus (SRP), total suspended solids (TSS) and chlorophyll a (Chla) in the water, and different P forms in the sediments, in an isolated part of Lake Yanglan. The results showed that the concentrations of TP, PP, SRP, TSS and Chla decreased significantly after the addition of Phoslock® + PAC. Moreover, the concentrations of labile-P, reductant-soluble-P and organic-P in the sediments were also significantly decreased after the Phoslock® + PAC application. However, the concentrations of both the stable apatite-P and residual-P in the sediments after application of Phoslock® + PAC were much higher than the pre-addition values, while the concentrations of metal-oxide-P did not differ significantly between the pre- and post- application conditions. Our findings imply that the combined application of Phoslock® and PAC can be used in the restoration of subtropical shallow lakes, to reduce the concentrations of P in the water and suppress the release of P from the sediments.


2014 ◽  
Vol 122 (2-3) ◽  
pp. 229-251 ◽  
Author(s):  
Lauriane Vilmin ◽  
Najla Aissa-Grouz ◽  
Josette Garnier ◽  
Gilles Billen ◽  
Jean-Marie Mouchel ◽  
...  

1984 ◽  
Vol 41 (6) ◽  
pp. 985-988 ◽  
Author(s):  
A. H. El-Shaarawi ◽  
M. A. Neilson

Water samples were collected on Lake Ontario during April and November, filtered (0.45 μm), and immediately analyzed onboard ship for the nutrients soluble reactive phosphorus, nitrate-plus-nitrite, and ammonia. Replicates were stored in glass bottles at 4 °C and reanalyzed within 8 d. Statistical analysis showed that soluble reactive phosphorus decreased by 11 and 13% and nitrate-plus-nitrite by 7 and 6%, whereas ammonia increased by 75% on one cruise and decreased by 37% on the other.


2016 ◽  
Vol 77 (3) ◽  
pp. 495-505 ◽  
Author(s):  
R. S. Cordeiro ◽  
J. E. L. Barbosa ◽  
G. Q. Lima Filho ◽  
L. G. Barbosa

Abstract The hydrological periods drive the structure and organization of aquatic communities in semiarid regions. We hypothesize that a decrease of the precipitation during the dry period will favor the development of the periphytic algal community, leading to higher richness and density in this period. To test this hypothesis, we investigated the changes in the periphytic algal community structure in three shallow and eutrophic ecosystems of the Brazilian semiarid. The sampling was performed between 2007 and 2010 at two-mensal intervals. The sampling of periphytic algal was performed in aquatic macrophytes and rocks. The abiotic variables were analyzed simultaneously. Dominance in diatoms, cyanobacteria and chlorophytes, respectively, was observed in two periods. In the dry period, waters were alkaline and had high concentrations of nitrate and total phosphorus associated with the highest densities of Bacillariophyceae. In the rainy period the water was warmer, oxygenated and high concentrations of ammonia and soluble reactive phosphorus with diatoms remained dominant but with reduced density, while cyanobacteria and chlorophytes increased. Overall, periphytic algal community composition no responded to changes in the hydrological periods. However, the hydrological periods altered the dynamics of periphytic algal community, supported by the alternation of the most representative classes (diatoms and cyanobacteria) between the hydrologic periods. Our data suggest that the morphometric and chemical and physical characteristics of lentic aquatic ecosystems studied were more important in the dynamics of periphytic algal community than the hydrological periods and types of substrates.


Sign in / Sign up

Export Citation Format

Share Document