scholarly journals What fraction of the Pacific and Indian oceans' deep water is formed in the Southern Ocean?

2018 ◽  
Vol 15 (12) ◽  
pp. 3779-3794 ◽  
Author(s):  
James W. B. Rae ◽  
Wally Broecker

Abstract. In this contribution we explore constraints on the fractions of deep water present in the Indian and Pacific oceans which originated in the northern Atlantic and in the Southern Ocean. Based on PO4* we show that if ventilated Antarctic shelf waters characterize the Southern contribution, then the proportions could be close to 50–50. If instead a Southern Ocean bottom water value is used, the Southern contribution is increased to 75 %. While this larger estimate may best characterize the volume of water entering the Indo-Pacific from the Southern Ocean, it contains a significant portion of entrained northern water. We also note that ventilation may be highly tracer dependent: for instance Southern Ocean waters may contribute only 35 % of the deep radiocarbon budget, even if their volumetric contribution is 75 %. In our estimation, the most promising approaches involve using CFC-11 to constrain the amount of deep water formed in the Southern Ocean. Finally, we highlight the broad utility of PO4* as a tracer of deep water masses, including descending plumes of Antarctic Bottom Water and large-scale patterns of deep ocean mixing, and as a tracer of the efficiency of the biological pump.

2018 ◽  
Author(s):  
James W. B. Rae ◽  
Wally Broecker

Abstract. In this contribution we explore constraints on the fractions of deep water present in Indian and Pacific Oceans which originated in the northern Atlantic and in the Southern Ocean. Based on PO4* we show that if ventilated Antarctic shelf waters characterize the Southern contribution, then the proportions are close to 50–50. If instead a Southern Ocean bottom water value is used, the Southern contribution is increased to 75 %. While this larger estimate may characterize the volume of water entering the Indo-Pacific from the Southern Ocean, it contains a significant portion of entrained northern water. We also note that ventilation may be highly tracer dependent: for instance Southern Ocean waters may contribute only 35 % of the deep radiocarbon budget, even if their volumetric contribution is 75 %. In our estimation, the most promising approaches involve using CFC-11 to constrain the amount of deep water formed in the Southern Ocean.


2019 ◽  
Author(s):  
Akitomo Yamamoto ◽  
Ayako Abe-Ouchi ◽  
Rumi Ohgaito ◽  
Akinori Ito ◽  
Akira Oka

Abstract. Increased accumulation of respired carbon in the deep ocean associated with enhanced efficiency of the biological carbon pump is thought to be a key mechanism of glacial CO2 drawdown. Despite greater oxygen solubility due to sea surface cooling, recent quantitative and qualitative proxy data show glacial deep-water deoxygenation, reflecting increased accumulation of respired carbon. However, the mechanisms of deep-water deoxygenation and contribution from the biological pump to glacial CO2 drawdown have remained unclear. In this study, we report the significance of iron fertilization from glaciogenic dust for glacial CO2 decrease and deep-water deoxygenation using our numerical simulation, which successfully reproduces the magnitude and large-scale pattern of the observed oxygen changes from the present to Last Glacial Maximum. Sensitivity experiments reveal that physical changes (e.g., more sluggish ocean circulation) contribute to only half of all glacial deep deoxygenation, whereas the other half is driven by enhanced efficiency of the biological pump. We found that iron input from the glaciogenic dust with higher iron solubility is the most significant factor for enhancement of the biological pump and deep-water deoxygenation. Glacial deep-water deoxygenation expands the hypoxic waters in the deep Pacific and Indian Ocean. The simulated global volume of hypoxic waters is nearly double the present value, which suggest that the glacial deep-water is sever environment for the benthic animals. Our model underestimated the deoxygenation in the deep Southern Ocean due to enhanced ventilation. The model-proxy comparison of oxygen change suggest that the stratified Southern Ocean is required for reproducing oxygen decline in the deep Southern Ocean. Enhanced efficiency of biological pump contributes to decrease of glacial CO2 by more than 30 ppm, which is supported by the model-proxy agreement of oxygen change. Our findings confirm the significance of the biological pump in glacial CO2 drawdown and deoxygenation.


2019 ◽  
Vol 15 (3) ◽  
pp. 981-996 ◽  
Author(s):  
Akitomo Yamamoto ◽  
Ayako Abe-Ouchi ◽  
Rumi Ohgaito ◽  
Akinori Ito ◽  
Akira Oka

Abstract. Increased accumulation of respired carbon in the deep ocean associated with enhanced efficiency of the biological carbon pump is thought to be a key mechanism of glacial CO2 drawdown. Despite greater oxygen solubility due to seawater cooling, recent quantitative and qualitative proxy data show glacial deep-water deoxygenation, reflecting increased respired carbon accumulation. However, the mechanisms of deep-water deoxygenation and contribution from the biological pump to glacial CO2 drawdown have remained unclear. In this study, we report the significance of iron fertilization from glaciogenic dust in glacial CO2 decrease and deep-water deoxygenation using our numerical simulation, which successfully reproduces the magnitude and large-scale pattern of the observed oxygen changes from the present to the Last Glacial Maximum. Sensitivity experiments show that physical changes contribute to only one-half of all glacial deep deoxygenation, whereas the other one-half is driven by iron fertilization and an increase in the whole ocean nutrient inventory. We find that iron input from glaciogenic dust with higher iron solubility is the most significant factor in enhancing the biological pump and deep-water deoxygenation. Glacial deep-water deoxygenation expands the hypoxic waters in the deep Pacific and Indian oceans. The simulated global volume of hypoxic waters is nearly double the present value, suggesting that glacial deep water was a more severe environment for benthic animals than that of the modern oceans. Our model underestimates the deoxygenation in the deep Southern Ocean because of enhanced ventilation. The model–proxy comparison of oxygen change suggests that a stratified Southern Ocean is required for reproducing the oxygen decrease in the deep Southern Ocean. Iron fertilization and a global nutrient increase contribute to a decrease in glacial CO2 of more than 30 ppm, which is supported by the model–proxy agreement of oxygen change. Our findings confirm the significance of the biological pump in glacial CO2 drawdown and deoxygenation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Hayatte Akhoudas ◽  
Jean-Baptiste Sallée ◽  
F. Alexander Haumann ◽  
Michael P. Meredith ◽  
Alberto Naveira Garabato ◽  
...  

AbstractThe Atlantic sector of the Southern Ocean is the world’s main production site of Antarctic Bottom Water, a water-mass that is ventilated at the ocean surface before sinking and entraining older water-masses—ultimately replenishing the abyssal global ocean. In recent decades, numerous attempts at estimating the rates of ventilation and overturning of Antarctic Bottom Water in this region have led to a strikingly broad range of results, with water transport-based calculations (8.4–9.7 Sv) yielding larger rates than tracer-based estimates (3.7–4.9 Sv). Here, we reconcile these conflicting views by integrating transport- and tracer-based estimates within a common analytical framework, in which bottom water formation processes are explicitly quantified. We show that the layer of Antarctic Bottom Water denser than 28.36 kg m$$^{-3}$$ - 3 $$\gamma _{n}$$ γ n is exported northward at a rate of 8.4 ± 0.7 Sv, composed of 4.5 ± 0.3 Sv of well-ventilated Dense Shelf Water, and 3.9 ± 0.5 Sv of old Circumpolar Deep Water entrained into cascading plumes. The majority, but not all, of the Dense Shelf Water (3.4 ± 0.6 Sv) is generated on the continental shelves of the Weddell Sea. Only 55% of AABW exported from the region is well ventilated and thus draws down heat and carbon into the deep ocean. Our findings unify traditionally contrasting views of Antarctic Bottom Water production in the Atlantic sector, and define a baseline, process-discerning target for its realistic representation in climate models.


Author(s):  
Jui-Chun Freya Chen ◽  
Wu-Cheng Chi ◽  
Chu-Fang Yang

Abstract Developing new ways to observe tsunami contributes to tsunami research. Tidal and deep-ocean gauges are typically used for coastal and offshore observations. Recently, tsunami-induced ground tilts offer a new possibility. The ground tilt signal accompanied by 2010 Mw 8.8 Chilean earthquake were observed at a tiltmeter network in Japan. However, tiltmeter stations are usually not as widely installed as broadband seismometers in other countries. Here, we studied broadband seismic records from Japan’s F-net and found ground tilt signals consistent with previously published tiltmeter dataset for this particular tsunamic event. Similar waveforms can also be found in broadband seismic networks in other countries, such as Taiwan, as well as an ocean-bottom seismometer. We documented a consistent time sequence of evolving back-azimuth directions of the tsunami waves at different stages of tsunami propagation through beamforming-frequency–wavenumber analysis and particle-motion analysis; the outcomes are consistent with the tsunami propagation model provided by the Pacific Tsunami Warning Center. These results shown that dense broadband seismic networks can provide a useful complementary dataset, in addition to tiltmeter arrays and other networks, to study or even monitor tsunami propagation using arrayed methods.


Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 391-396 ◽  
Author(s):  
Reiner Schlitzer

The renewal of east Atlantic deep water and its large-scale circulation and mixing have been studied in observed distributions of temperature, silicate, ΣCO2, and 14C. 14C variations in northeast Atlantic deep water below 3500m depth are small. Δ14C values range from − 100‰ to −125‰. 14C bottom water concentrations decrease from Δ14C =−117‰ in the Sierra Leone Basin to Δ14C = − 123‰ in the Iberian Basin and are consistent with a mean northward bottom water flow. The characteristic of the water that flows from the west Atlantic through the Romanche Trench into the east Atlantic was determined by inspection of θ/Δ14C and θ/SiO2 diagrams. A mean potential temperature of θ = 1.50 ± .05°C was found for the inflowing water. A multi-box model including circulation, mixing, and chemical source terms in the deep water has been formulated. Linear programing and least-squares techniques have been used to obtain the transport and source parameters of the model from the observed tracer fields. Model calculations reveal an inflow through the Romanche Trench from the west Atlantic, which predominates over any other inflow, of (5 ± 2) Sv (potential temperature 1.50°C), a convective turnover of (150 ± 50) years and a vertical apparent diffusivity of (4 ± 1) cm2/s. Chemical source terms are in the expected ranges.


Author(s):  
Andrew McC. Hogg ◽  
David R. Munday

The response of the major ocean currents to changes in wind stress forcing is investigated with a series of idealized, but eddy-permitting, model simulations. Previously, ostensibly similar models have shown considerable variation in the oceanic response to changing wind stress forcing. Here, it is shown that a major reason for these differences in model sensitivity is subtle modification of the idealized bathymetry. The key bathymetric parameter is the extent to which the strong eddy field generated in the circumpolar current can interact with the bottom water formation process. The addition of an embayment, which insulates bottom water formation from meridional eddy fluxes, acts to stabilize the deep ocean density and enhances the sensitivity of the circumpolar current. The degree of interaction between Southern Ocean eddies and Antarctic shelf processes may thereby control the sensitivity of the Southern Ocean to change.


2009 ◽  
Vol 5 (3) ◽  
pp. 1259-1296 ◽  
Author(s):  
L. C. Skinner

Abstract. So far, the exploration of possible mechanisms for glacial atmospheric CO2 draw-down and marine carbon sequestration has focussed almost exclusively on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates). Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses) in setting the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the carbon storage capacity of the deep sea, which operates via an increase in the volume of relatively carbon-enriched AABW-like deep-water filling the ocean basins. Given the hypsometry of the ocean floor and an active biological pump, the water-mass that fills more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. A set of simple box-model experiments confirm the expectation that a deep sea dominated by AABW-like deep-water holds more CO2, prior to any additional changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" might be as large as the contributions that have been attributed to carbonate compensation, the thermodynamic solubility pump or the biological pump for example. If incorporated into the list of factors that have contributed to marine carbon sequestration during past glaciations, this standing volume mechanism may help to reduce the amount of glacial – interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.


Sign in / Sign up

Export Citation Format

Share Document