scholarly journals Mechanisms of northern North Atlantic biomass variability

2018 ◽  
Vol 15 (20) ◽  
pp. 6049-6066 ◽  
Author(s):  
Galen A. McKinley ◽  
Alexis L. Ritzer ◽  
Nicole S. Lovenduski

Abstract. In the North Atlantic Ocean north of 40∘ N, intense biological productivity occurs to form the base of a highly productive marine food web. SeaWiFS satellite observations indicate trends of biomass in this region over 1998–2007. Significant biomass increases occur in the northwest subpolar gyre and there are simultaneous significant declines to the east of 30–35∘ W. These short-term changes, attributable to internal variability, offer an opportunity to explore the mechanisms of the coupled physical–biogeochemical system. We use a regional biogeochemical model that captures the observed changes for this exploration. Biomass increases in the northwest are due to a weakening of the subpolar gyre and associated shoaling of mixed layers that relieves light limitation. Biomass declines to the east of 30–35∘ W are due to reduced horizontal convergence of phosphate. This reduced convergence is attributable to declines in vertical phosphate supply in the regions of deepest winter mixing that lie to the west of 30–35∘ W. Over the full time frame of the model experiment, 1949–2009, variability of both horizontal and vertical phosphate supply drive variability in biomass on the northeastern flank of the subtropical gyre. In the northeast subpolar gyre horizontal fluxes drive biomass variability for both time frames. Though physically driven changes in nutrient supply or light availability are the ultimate drivers of biomass changes, clear mechanistic links between biomass and standard physical variables or climate indices remain largely elusive.

2018 ◽  
Author(s):  
Galen A. McKinley ◽  
Alexis L. Ritzer ◽  
Nicole S. Lovenduski

Abstract. In the North Atlantic Ocean north of 40° N, intense biological productivity occurs to form the base of a highly productive marine food web. SeaWiFS satellite observations indicate trends of biomass in this region over 1998–2007. Significant biomass increases occur in the northwest subpolar gyre and there are simultaneous significant declines to the east of 30–35° W. In this study, we use a regional biogeochemical model of the North Atlantic that captures the observed trends to determine their mechanistic drivers. Biomass increases in the northwest are due to a weakening of the subpolar gyre and associated shoaling of mixed layers that relieves light limitation. Biomass declines to the east of 30–35° W are due to reduced horizontal convergence of phosphate. This reduced convergence is attributable to declines in vertical phosphate supply in the regions of deepest winter mixing that lie to the west of 30–35° W. Over the full timeframe of the model experiment, 1949–2009, variability of both horizontal and vertical phosphate supply drive variability in biomass on the northeastern flank of the subtropical gyre. In the northeast subpolar gyre horizontal fluxes drive biomass variability for both timeframes. Though physically-driven changes in nutrient supply or light availability are the ultimate drivers of biomass changes, clear mechanistic links between biomass and standard physical variables or climate indices remain largely elusive.


2014 ◽  
Vol 44 (1) ◽  
pp. 179-201 ◽  
Author(s):  
Nicolas Barrier ◽  
Christophe Cassou ◽  
Julie Deshayes ◽  
Anne-Marie Treguier

Abstract A new framework is proposed for investigating the atmospheric forcing of North Atlantic Ocean circulation. Instead of using classical modes of variability, such as the North Atlantic Oscillation (NAO) or the east Atlantic pattern, the weather regimes paradigm was used. Using this framework helped avoid problems associated with the assumptions of orthogonality and symmetry that are particular to modal analysis and known to be unsuitable for the NAO. Using ocean-only historical and sensitivity experiments, the impacts of the four winter weather regimes on horizontal and overturning circulations were investigated. The results suggest that the Atlantic Ridge (AR), negative NAO (NAO−), and positive NAO (NAO+) regimes induce a fast (monthly-to-interannual time scales) adjustment of the gyres via topographic Sverdrup dynamics and of the meridional overturning circulation via anomalous Ekman transport. The wind anomalies associated with the Scandinavian blocking regime (SBL) are ineffective in driving a fast wind-driven oceanic adjustment. The response of both gyre and overturning circulations to persistent regime conditions was also estimated. AR causes a strong, wind-driven reduction in the strengths of the subtropical and subpolar gyres, while NAO+ causes a strengthening of the subtropical gyre via wind stress curl anomalies and of the subpolar gyre via heat flux anomalies. NAO− induces a southward shift of the gyres through the southward displacement of the wind stress curl. The SBL is found to impact the subpolar gyre only via anomalous heat fluxes. The overturning circulation is shown to spin up following persistent SBL and NAO+ and to spin down following persistent AR and NAO− conditions. These responses are driven by changes in deep water formation in the Labrador Sea.


2021 ◽  
Vol 18 (5) ◽  
pp. 1803-1822
Author(s):  
Arnaud Laurent ◽  
Katja Fennel ◽  
Angela Kuhn

Abstract. Continental shelf regions in the ocean play an important role in the global cycling of carbon and nutrients, but their responses to global change are understudied. Global Earth system models (ESMs), as essential tools for building understanding of ocean biogeochemistry, are used extensively and routinely for projections of future climate states; however, their relatively coarse spatial resolution is likely not appropriate for accurately representing the complex patterns of circulation and elemental fluxes on the shelves along ocean margins. Here, we compared 29 ESMs used in the Intergovernmental Panel on Climate Change (IPCC)'s Assessment Reports (ARs) 5 and 6 and a regional biogeochemical model for the northwest North Atlantic (NWA) shelf to assess their ability to reproduce surface observations of temperature, salinity, nitrate and chlorophyll. The NWA region is biologically productive, influenced by the large-scale Gulf Stream and Labrador Current systems and particularly sensitive to climatically induced changes in large-scale circulation. Most ESMs compare relatively poorly to observed surface nitrate and chlorophyll and show differences with observed surface temperature and salinity that suggest spatial mismatches in their large-scale current systems. Model-simulated nitrate and chlorophyll compare better with available observations in AR6 than in AR5, but none of the models perform equally well for all four parameters. The ensemble means of all ESMs, and of the five best-performing ESMs, strongly underestimate observed chlorophyll and nitrate. The regional model has a much higher spatial resolution and reproduces the observations significantly better than any of the ESMs. It also simulates reasonably well vertically resolved observations from gliders and bi-monthly ship-based monitoring observations. A ranking of the ESMs indicates that only one ESM has good and consistent performance for all variables. An additional evaluation of the ESMs along the regional model boundaries shows larger variability but is generally consistent with the ranking on the shelf. Overall, 11 ESMs were deemed satisfactory for use in the NWA, either directly or for regional downscaling.


2009 ◽  
Vol 66 (5) ◽  
pp. 759-770 ◽  
Author(s):  
Hjálmar Hátún ◽  
Mark R. Payne ◽  
Jan Arge Jacobsen

The spawning stock of blue whiting ( Micromesistius poutassou ), an economically important pelagic gadoid in the North Atlantic Ocean, increased threefold after 1995. The reproductive success of the stock is largely determined during the very early stages of life, but little is known about the spawning dynamics of this species. Here we show that the spawning distribution of blue whiting is variable, regulated by the hydrography west of the British Isles. When the North Atlantic subpolar gyre is strong and spreads its cold, fresh water masses east over Rockall Plateau, the spawning is constrained along the European continental slope and in a southerly position near Porcupine Bank. When the gyre is weak and conditions are relatively saline and warm, the spawning distribution moves northwards along the slope and especially westwards covering Rockall Plateau. The apparent link between the spawning distribution and the subpolar gyre is the first step towards understanding the reproduction variability, which currently is the main challenge for appropriate management of the blue whiting stock.


2018 ◽  
Vol 15 (8) ◽  
pp. 2309-2323 ◽  
Author(s):  
Daniel Cossa ◽  
Lars-Eric Heimbürger ◽  
Fiz F. Pérez ◽  
Maribel I. García-Ibáñez ◽  
Jeroen E. Sonke ◽  
...  

Abstract. We report here the results of total mercury (HgT) determinations along the 2014 Geotraces Geovide cruise (GA01 transect) in the North Atlantic Ocean (NA) from Lisbon (Portugal) to the coast of Labrador (Canada). HgT concentrations in unfiltered samples (HgTUNF) were log-normally distributed and ranged between 0.16 and 1.54 pmol L−1, with a geometric mean of 0.51 pmol L−1 for the 535 samples analysed. The dissolved fraction (< 0.45 µm) of HgT (HgTF), determined on 141 samples, averaged 78 % of the HgTUNF for the entire data set, 84 % for open seawaters (below 100 m) and 91 % if the Labrador Sea data are excluded, where the primary production was high (with a winter convection down to 1400 m). HgTUNF concentrations increased eastwards and with depth from Greenland to Europe and from subsurface to bottom waters. The HgTUNF concentrations were similarly low in the subpolar gyre waters ( ∼  0.45 pmol L−1), whereas they exceeded 0.60 pmol L−1 in the subtropical gyre waters. The HgTUNF distribution mirrored that of dissolved oxygen concentration, with highest concentration levels associated with oxygen-depleted zones. The relationship between HgTF and the apparent oxygen utilization confirms the nutrient-like behaviour of Hg in the NA. An extended optimum multiparameter analysis allowed us to characterize HgTUNF concentrations in the different source water types (SWTs) present along the transect. The distribution pattern of HgTUNF, modelled by the mixing of SWTs, show Hg enrichment in Mediterranean waters and North East Atlantic Deep Water and low concentrations in young waters formed in the subpolar gyre and Nordic seas. The change in anthropogenic Hg concentrations in the Labrador Sea Water during its eastward journey suggests a continuous decrease in Hg content in this water mass over the last decades. Calculation of the water transport driven by the Atlantic Meridional Overturning Circulation across the Portugal–Greenland transect indicates northward Hg transport within the upper limb and southward Hg transport within the lower limb, with resulting net northward transport of about 97.2 kmol yr−1.


2014 ◽  
Vol 27 (21) ◽  
pp. 8229-8243 ◽  
Author(s):  
Daniel L. R. Hodson ◽  
Jon I. Robson ◽  
Rowan T. Sutton

Abstract In the 1960s and early 1970s, sea surface temperatures in the North Atlantic Ocean cooled rapidly. There is still considerable uncertainty about the causes of this event, although various mechanisms have been proposed. In this observational study, it is demonstrated that the cooling proceeded in several distinct stages. Cool anomalies initially appeared in the mid-1960s in the Nordic Seas and Gulf Stream extension, before spreading to cover most of the subpolar gyre. Subsequently, cool anomalies spread into the tropical North Atlantic before retreating, in the late 1970s, back to the subpolar gyre. There is strong evidence that changes in atmospheric circulation, linked to a southward shift of the Atlantic ITCZ, played an important role in the event, particularly in the period 1972–76. Theories for the cooling event must account for its distinctive space–time evolution. The authors’ analysis suggests that the most likely drivers were 1) the “Great Salinity Anomaly” of the late 1960s; 2) an earlier warming of the subpolar North Atlantic, which may have led to a slowdown in the Atlantic meridional overturning circulation; and 3) an increase in anthropogenic sulfur dioxide emissions. Determining the relative importance of these factors is a key area for future work.


2007 ◽  
Vol 4 (6) ◽  
pp. 933-967
Author(s):  
G. Charria ◽  
I. Dadou ◽  
P. Cipollini ◽  
M. Drévillon ◽  
V. Garçon

Abstract. How do Rossby waves influence primary production in the North Atlantic Ocean? Rossby waves have a clear signature on surface chlorophyll concentrations which can be explained by a combination of vertical and horizontal mechanisms (reviewed in Killworth et al., 2004). In this study, we aim to investigate the role of the different physical processes to explain the surface chlorophyll signatures and the consequences on primary production using a 3-D coupled physical/biogeochemical model for the year 1998. The analysis at 20 given latitudes, mainly located in the subtropical gyre, where Rossby waves are strongly correlated with a surface chlorophyll signature, shows that vertical and horizontal processes are involved in the surface chlorophyll anomalies. Furthermore, the ecosystem response is, as expected, stronger when vertical input of dissolved inorganic nitrogen is observed. The surface chlorophyll anomalies, induced by these physical mechanisms, have an impact on primary production. We then estimate that Rossby waves induce, locally in space and time, increases (generally associated with the wave crest) and decreases (generally associated with the wave trough) in primary production (~±20% of the estimated primary production). This symmetrical situation suggests a net weak effect of Rossby waves on primary production.


2021 ◽  
Author(s):  
Ivane Salaün ◽  
Virginie Thierry ◽  
Herlé Mercier

&lt;p&gt;Located south of Iceland, the Reykjanes Ridge is a major topographic structure of the North Atlantic Ocean that strongly influences the spatial distribution and circulation of the North Atlantic Subpolar Gyre water masses. Around the ridge, the circulation is composed of two main along-ridge currents, the southwestward East Reykjanes Ridge Current (ERRC) in the Iceland Basin and the northeastward Irminger Current (IC) in the Irminger Sea. To study the along Reykjanes Ridge flow variability and the inter-basin connection through the ridge and connections with the interior of each basin, volume and water mass transports over the Reykjanes Ridge during summer 2015, 2016 and 2017 are analyzed. Data used are velocity and hydrographic measurements carried out along and perpendicular to the crest of the Reykjanes Ridge during the RREX (Reykjanes Ridge Experiment Project) cruises in June&amp;#8211;July 2015 and June&amp;#8211;July 2017 and BOCATS cruise in July 2016. The new circulation scheme in the area described in 2015&amp;#160; by Petit et al. (J. Geophys. Res., 2018) with flows connecting the ERRC and IC branches at specific locations set by the bathymetry of the ridge is again observed&amp;#160; in 2016 and&amp;#160; 2017, with variations concerning the connections with the interiors of the basins. The data set reveals remarkable changes in the hydrological properties and transports of the ERRC, IC and cross ridge flows. The westward transport across the ridge, which represents the subpolar gyre intensity, was estimated at -19.6&amp;#177;3.4 Sv in 2015 and -35.2&amp;#177;3 Sv in 2017. A freshening and a decline in density mainly affecting the Subpolar Mode Water was observed in 2017. It was associated with a lower mode water&amp;#160; transport partly compensated by a higher transport of intermediate and Arctic waters. We further document each water mass contribution to the westward flow of the gyre and the structure of the ERRC and IC.&lt;/p&gt;


Ocean Science ◽  
2008 ◽  
Vol 4 (3) ◽  
pp. 199-213 ◽  
Author(s):  
G. Charria ◽  
I. Dadou ◽  
P. Cipollini ◽  
M. Drévillon ◽  
V. Garçon

Abstract. Rossby waves appear to have a clear signature on surface chlorophyll concentrations which can be explained by a combination of vertical and horizontal mechanisms. In this study, we investigate the role of the different physical processes in the north Atlantic to explain the surface chlorophyll signatures and the consequences on primary production, using a 3-D coupled physical/biogeochemical model for the year 1998. The analysis at 20 given latitudes, mainly located in the subtropical gyre, where Rossby waves are strongly correlated with a surface chlorophyll signature, shows the important contribution of horizontal advection and of vertical advection and diffusion of inorganic dissolved nitrogen. The main control mechanism differs according to the biogeochemical background conditions of the area. The surface chlorophyll anomalies, induced by these physical mechanisms, have an impact on primary production. We estimate that Rossby waves induce, locally in space and time, increases (generally associated with the chlorophyll wave crest) and decreases (generally associated with the chlorophyll wave trough) in primary production, ~±20% of the estimated background primary production. This symmetrical situation suggests a net weak effect of Rossby waves on primary production.


Sign in / Sign up

Export Citation Format

Share Document