scholarly journals Variations and determinants of carbon content in plants: a global synthesis

2018 ◽  
Vol 15 (3) ◽  
pp. 693-702 ◽  
Author(s):  
Suhui Ma ◽  
Feng He ◽  
Di Tian ◽  
Dongting Zou ◽  
Zhengbing Yan ◽  
...  

Abstract. Plant carbon (C) content is one of the most important plant traits and is critical to the assessment of global C cycle and ecological stoichiometry; however, the global variations in plant C content remain poorly understood. In this study, we conducted a global analysis of the plant C content by synthesizing data from 4318 species to document specific values and their variation of the C content across plant organs and life forms. Plant organ C contents ranged from 45.0 % in reproductive organs to 47.9 % in stems at global scales, which were significantly lower than the widely employed canonical value of 50 %. Plant C content in leaves (global mean of 46.9 %) was higher than that in roots (45.6 %). Across life forms, woody plants exhibited higher C content than herbaceous plants. Conifers, relative to broad-leaved woody species, had higher C content in roots, leaves, and stems. Plant C content tended to show a decrease with increasing latitude. The life form explained more variation of the C content than climate. Our findings suggest that specific C content values of different organs and life forms developed in our study should be incorporated into the estimations of regional and global vegetation biomass C stocks.

2017 ◽  
Author(s):  
Suhui Ma ◽  
Feng He ◽  
Di Tian ◽  
Dongting Zou ◽  
Zhengbing Yan ◽  
...  

Abstract. Abstract. Plant carbon (C) content is one of the most important plant traits and is critical in the assessment of global C cycle and ecological stoichiometry. However, the global variation in plant C content remains poorly understood. We conducted a global analysis of the plant C content by synthesizing data from 4318 species to provide specific values of C content and to assess their variation across plant organs and life forms. Our results showed that C content varied markedly across plant organs. Plant organ C content ranged from 45.01 % in reproductive organs to 47.88 % in stems at global scales, which were significantly lower than a canonical value of 50 % that has been widely employed in previous studies. Plant C content in leaves was higher than that in roots. Across life forms, woody plants exhibited higher C content than herbaceous plants. Conifers, relative to broad-leaved woody species, had higher C content in roots, leaves and stems. Plant C content tended to decrease with the increasing latitude. The life form explained more variation of the C content than climate due to plant structural requirements. Our findings suggest that specific C content values from different organs and life forms may be more suitable to evaluate global vegetation C stock and plant ecological stoichiometry.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 518 ◽  
Author(s):  
María D. Bejarano ◽  
Judith Sarneel ◽  
Xiaolei Su ◽  
Alvaro Sordo-Ward

Flow regulation affects bordering riparian plant communities worldwide, but how different plant life forms are affected by river regulation still needs further research. In northern Sweden, we selected 10 rivers ranging from free-flowing to low, moderately, and highly regulated ones. In 94 reaches across those rivers, we evaluated the relative abundance of woody and herbaceous (i.e., graminoids and forbs) life forms, their species richness, and their relative presence. We also explored which, and to what extent, hydrological variables drove species assembly within each life form. The relative abundance and species richness of each life form decreased across river categories with increasing levels of regulation. This was particularly apparent in herbaceous life forms, and the most drastic decreases were observed in all life forms in moderately or highly regulated reaches. Additionally, when river regulation increased, the relative presence of many species from all life forms decreased. Unlike woody species, only a few new herbaceous species appeared in regulated reaches. A canonical correspondence analyses (CCA) revealed that a wide range of hydrological variables explained the occurrence of woody species, while fewer variables explained variation in the graminoid and forb life forms. We conclude that flow regulation and its intensity result into clear shifts in the relative abundance of different life forms, as well as in changes of within-group species richness and composition. Consequently, the modification of certain flow attributes in flow regulation schemes, as well as the intensity of these modifications, may alter the ratio between herbaceous and woody species, ultimately impacting the functions and benefits derived from each life form.


2020 ◽  
Vol 13 (2) ◽  
pp. 233-240
Author(s):  
Su-Hui Ma ◽  
Anwar Eziz ◽  
Di Tian ◽  
Zheng-Bing Yan ◽  
Qiong Cai ◽  
...  

Abstract Aims Forest biomass carbon (C) stocks are usually estimated by multiplying biomass by a C conversion factor, i.e. C concentration. Thus, tree C concentration is crucial to the assessments of forest C cycles. As stems contribute to the large fraction of tree biomass, the canonical value of 50% or other simplified values of stem C concentration are widely used to represent the values of tree C concentration in the estimations of forest C stocks at different scales. However, C concentration variations between tree organs and within tree size and their impacts on forest C stocks are still unclear. Methods We conducted a global analysis of organ C concentration in age-specific trees based on 576 records of tree age, size (diameter at breast height and biomass) and C concentration data to evaluate the relationships between organ C concentrations and the changes of stem C concentration with tree age and size. Important Findings Tree C concentration varied significantly with organs. Stem C concentration of trees was significantly correlated with that of other tree organs, except for barks and reproductive organs. The stem C concentration increased significantly with tree size and age, which contributed to the increases in C contents of stems and trees. Using the C concentration in stems to represent the C concentrations of other organs and the whole tree could produce considerable errors in the estimations of forest C stocks (−8.6% to 25.6% and −2.5% to 5.9%, respectively). Our findings suggest that tree C accumulation in forests is related to the size- and age-dependent increases in stem C concentration and using specific C concentration values of tree organs can improve the estimations of forest C stocks.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Nelson Ramírez ◽  
Yeni Barrios ◽  
Herbert Briceño

Abstract: The associations between morphological fruit types, fruit and seed colors, and functional plant traits: life forms, epiphytism, physiology, nutritional relationships, fruit phenology, and successional stage, were determined for 1,139 plant species from contrasting plant communities. Texture and dehiscence were closely related. Dehiscence is largely associated with dry tissues; indehiscence, however, is an attribute of both dry and fleshy fruits. The number of morphological fruit types was 28 or 55 for Gray's and Spjut's classifications, respectively. Fruits were predominantly dark in color (brown, purple-black, black or green), whilst seeds had both dark and light colors (brown, beige, or black). The most representative associations were mainly found between the more abundant fruit types and the colors most common. Asymmetries in the level of specialization, whereby less common fruit and seed colors tended to be associated with the most common fruit types, were also found. Fleshy fruits showed more variation as regards their coloration, and only drupes and berries showed a tendency towards a specific color: purple-black. The relationships among fruit type and color, seed color, and functional plant traits revealed the following trends: trees produced both fleshy and dry fruits; shrubs produced fleshy fruits; and herbaceous species, dry fruits. Woody species tended to have dark or bright colors, depending on their seed dispersal mechanisms and phylogenetic relations. Epiphytes were associated with dry-dehiscent fruits and brown seeds, and parasitic-hemiparasitic species had predominantly fleshy-indehiscent fruits. Pioneer species were more likely to have dry fruits, whereas fleshy fruits tended to be more frequent in late successional stage species. The C4 species, mostly herbs, had mainly one-seeded dry fruits, but multi-seeded fruits in succulent-CAM species showed morphologically diverse fruit types. Unripe and ripe fruits showed seasonal changes, especially during the rainy-dry transition period for the most abundant morphological fruit types, dry fruits during the dry period and fleshy fruited species was positively associated with the rainy season. All these trends are discussed with regard to their environmental significance and the relationships between fruit morphology, colors and functional groups. .


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1031
Author(s):  
Clara Bertel ◽  
Jürgen Hacker ◽  
Gilbert Neuner

In the temperate zone of Europe, plants flowering in early spring or at high elevation risk that their reproductive organs are harmed by episodic frosts. Focusing on flowers of two mountain and three early-flowering colline to montane distributed species, vulnerability to ice formation and ice management strategies using infrared video thermography were investigated. Three species had ice susceptible flowers and structural ice barriers, between the vegetative and reproductive organs, that prevent ice entrance from the frozen stems. Structural ice barriers as found in Anemona nemorosa and Muscari sp. have not yet been described for herbaceous species that of Jasminum nudiflorum corroborates findings for woody species. Flowers of Galanthus nivalis and Scilla forbesii were ice tolerant. For all herbs, it became clear that the soil acts as a thermal insulator for frost susceptible below ground organs and as a thermal barrier against the spread of ice between individual flowers and leaves. Both ice barrier types presumably promote that the reproductive organs can remain supercooled, and can at least for a certain time-period escape from effects of ice formation. Both effects of ice barriers appear significant in the habitat of the tested species, where episodic freezing events potentially curtail the reproductive success.


2008 ◽  
Vol 24 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Satomi Shiodera ◽  
Joeni S. Rahajoe ◽  
Takashi Kohyama

Abstract:The relationship between leaf longevity and other leaf traits was compared among different life-form categories (trees, herbs, climbers and epiphytes) of 101 plant species in a tropical montane forest on Mt. Halimun, West Java, Indonesia. We applied the Cox proportional hazards regression to estimate the leaf longevity of each species from 30 mo of census data. We examined whether estimated longevity was explained by either species life-form categories, taxonomic groupings (eudicots, monocots, magnoliids and chloranthales, and ferns) or such leaf traits as leaf area, leaf mass per area (LMA), mass-based leaf nitrogen, penetrometer reading, condensed-tannin-free total phenolics and condensed tannin. There was a wide-ranged interspecific variation in leaf longevity, mostly 10–50 mo, similarly across life-form categories. LMA showed a strong positive influence on leaf longevity. We found that relationships between leaf longevity and some leaf traits were different among various life forms. Trees tended to have high LMA, while climbers tended to have low LMA at the same leaf longevity. We hypothesize that such difference among life forms reflects shoot architecture characteristics. Multi-shoot trees with branching architecture need to have self-supporting leaves, whereas semi-epiphytic climbers can maintain relatively low biomass investment to leaves hanging or relying upon the mechanical support from host plants.


Author(s):  
Pavlova N.R. ◽  
Dzerkal V.M. ◽  
Ponomareva А.А.

In order to preserve, reproduce and effectively use the natural complexes and objects of the DniproDelta as one of the most valuable natural floodplain-littoral complexes in Europe, which have special environmental, recreational, historical and cultural, scientific, educational and aesthetic value, and ensurethe conservationof «DniproDelta»wetland of theinternational importance,the National Natural Park «Lower Dnipro»was created(Decree of the President of Ukraine of November 24, 2015 No 657/2015).The flora of the higher vascular plants of the Park contains 820 species, 40 species of which (4.9% of the total number) are woody plants. Rosaceae Juss. (14 species), Salicaceae Mirb. (7 species), Aceraceae Juss. (3 types) are leading families of the dendroflora of the Park.Biomorphological characteristics of tree plant species in the flora of the Lower Dnipro National Nature Park were carried out according to the following classifications: 1) K. Raunkiersystem of plant life forms; 2) ecological and morphological classification of life forms of I. G. Serebryakov; 3) architectural models of F. Alle, R. Oldeman and P. Tomlinson; 4) classification of the life forms of plants of the temperate zone, which takes into account the vegetative propagation by O. V. Smirnova, L. B. Zaugolnova.AnalysisoftypesofbiomorphsaccordingtotheclassificationofK. Raunkiershowedthatthevastmajorityofdendrofloraspeciesbelongtophanerophytes, amongthem, dependingontheheightoftheplant, therearedifferentgroups-megaphanerophytes(e.g., Populustremula), mesophanerophytes(Salixalba), microphaneorphytes, nanophanerophytes(Amygdalusnana) andhamephytes(Ephedradistachia).According to the ecological and morphological classification of I. G. Serebryakov life forms, the flora of the Park is dominated by forest-steppe trees and forest-type trees.The trees which belong to one life form often differ in the principles of growth and formation of the crown, branching, and general habitus, which is generally considered as an architectural model of a particular species. According to the classification of architectural models by F. Alle, R. Oldeman and P. Tomlinson, in the flora of the Park, there are five models among which the species formed by the model of Tomlinson have a significant representation, and the species formed by the models of Manzheno and Champagne have a smaller representation.Key words:flora, tree, classification, life form, bush. З метою збереження, відтворення і ефективного використання природних комплексів та об’єктів дельти річки Дніпро як одного з найцінніших природних заплавно-літоральних комплексів у Європі, які мають особливу природоохоронну, оздоровчу, історико-культурну, наукову, освітню та естетичну цінність, забезпечення збереження водно-болотного угіддя міжнародного значення «Дельта р. Дніпро» створено Національний природний парк «Нижньодніпровський» (Указ президента України від 24 листопада 2015 року No 657/2015).Флора вищих судинних рослин Парку попередньо складає 820 видів, з них 40 видів (4,9% від загальної кількості) –деревні рослини.Провідні родини дендрофлори Парку –Rosaceae Juss. (14 видів), SalicaceaeMirb. (7 видів), AceraceaeJuss. (3 види). Біоморфологічну характеристику видів деревних рослин у флорі національного природнього парку «Нижньодніпровський» проведено за класифікаціями: 1) система життєвих форм рослин К. Раункієра; 2) еколого-морфологічна класифікація життєвих форм І. Г. Сєрєбрякова; 3) архітектурні моделі Ф. Аллє, Р. Ольдемана і П. Томлінсона; 4)класифікація життєвих форм рослин помірної зони, яка враховує вегетативне розмноження О. В. Смирнової, Л. Б. Заугольнової.Аналіз типів біоморф за класифікацією К. Раункієра показав, що переважна більшість видів дендрофлори належить до фанерофітів, серед них, в залежності від висоти рослини, виділяють різні групи –мегафанерофіти (наприклад, Populus tremula), мезофанерофіти (Salix alba), мікрофанерофіти (Amorpha fruticosa), нанофанерофіти (Amygdalus nana) та хамефіти (Ephedra distachia).За еколого-морфологічною класифікацією життєвих форм І. Г. Сєрєбрякова у флорі Парку домінують дерева лісостепового типу та дерева лісового типу.Дерева, які відносяться до однієї життєвої форми, часто відрізняютьсяпринципами наростання та формування крони, галуженням, загальним габітусом, що загалом розглядається як архітектурна модель конкретного виду. За класифікацією архітектурних моделей Ф.Аллє, Р. Ольдемана і П. Томлінсона у флорі Парку виділено п’ять моделей, серед яких, значне представництво мають види, що формуються за моделлю Томлінсона, менше представництво мають види, що формуються за моделями Манжено та Шампанії.Ключові слова: флора, дерево, класифікація, життєва форма, кущ.


2004 ◽  
Vol 64 (2) ◽  
pp. 201-209 ◽  
Author(s):  
M. A. Batalha ◽  
F. R. Martins

We used Raunkiaer's system to classify in life-forms the vascular plants present in 12 random 25 m² quadrats of a cerrado site. The study area is covered by cerrado sensu stricto and is located in the Valério fragment, at about 22º13'S and 47º51'W, 760 m above sea level, in the Itirapina Ecological and Experimental Station, São Paulo State, southeastern Brazil. The floristic spectrum considers the life-form of each species, while in the frequency spectrum, each species is weighted by its frequency. The vegetation spectrum does not consider the species at all, but only the individuals in each life-form class. In the floristic spectrum, the most represented life-forms were the phanerophytes and the hemicryptophytes, as in other cerrado sites. This spectrum differed significantly from Raunkiaer's normal spectrum, mainly due to under-representation of therophytes and over-representation of phanerophytes. The floristic and frequency spectra were similar, but both differed from the vegetation spectrum. We recommend the floristic spectrum when working at larger scales and a description of the phytoclimate is wanted. The vegetation spectrum is preferable when working at smaller scales and wanting a quantitative description of the physiognomy. The frequency spectrum is not recommended at all.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Macielle Macedo Coelho ◽  
André Márcio Amorim

The aim of this study is to survey the angiosperms of two montane forest remnants in the southern Bahia, Brazil: Corcovado (SCO) and Pedra Lascada (SPL). Both fragments are located in the municipality of Almadina and Barro Preto, respectively, and are 18 km distant from each other. We sampled 899 species of angiosperms distributed in 437 genera and 116 families. The SCO was the richest area with 678 species, distributed in 367 genera and 100 families. SPL showed 466 species in 269 genera and 88 families. The percentage of species identified was 85.8% and of this total, 37.7% are endemic to the Atlantic Forest, 11.2% are endemic to southern Bahia and northern Espírito Santo and 7% are disjunct between the Atlantic Forest and Amazon. The remaining percentages (44.3%) were of species widely distributed. The richest families in the two areas were Orchidaceae (10%), Rubiaceae (7%), Bromeliaceae (5.5%), Melastomataceae (4.2%) and Poaceae (4%). The richest genera were Psychotria (2%),Piper (1.8%), Ocotea (1.6%),Vriesea (1.5%) and Peperomia (1.4%). More than half of the recorded species showed non-arboreal habit, regarding life forms documented. That comes against the assertion that many authors in the tropical forests, where species richness in angiosperms is expected for non-woody species, especially in montane forests. Twelve species have been identified as new, but seven others already described from collections previously obtained in these two areas. Orchidaceae, Rubiaceae, Poaceae and Bromeliaceae showed significant richness in this study these families are commonly reported as the richest in other inventories in the Atlantic Forest in southern Bahia reinforcing their importance to the regional flora. The high levels of richness, endemism, and the growing numbers of new taxonomic discoveries from the SPL and SCO sites indicate the biological importance of these two forest remnants. The implementation of parks or other protected environmental reserves would be essential to the conservation of its species.


Sign in / Sign up

Export Citation Format

Share Document