scholarly journals Tracing terrestrial versus marine sources of dissolved organic carbon in a coastal bay using stable carbon isotopes

2020 ◽  
Vol 17 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Shin-Ah Lee ◽  
Tae-Hoon Kim ◽  
Guebuem Kim

Abstract. The sources of dissolved organic matter (DOM) in coastal waters are diverse, and they play different roles in the biogeochemistry and ecosystems of the ocean. In this study, we measured dissolved organic carbon (DOC) and nitrogen (DON), the stable carbon isotopic composition of dissolved organic carbon (δ13C-DOC), and fluorescent dissolved organic matter (FDOM) in coastal bay waters surrounded by large cities (Masan Bay, Republic of Korea) to determine the different DOM sources in this region. The surface seawater samples were collected in two sampling campaigns (August 2011 and August 2016). The salinities were in the range of 10–21 in 2011 and 25–32 in 2016. In 2011, excess DOC was observed in high-salinity (16–21) waters; the excess DOC source was found to be mainly from marine autochthonous production according to the δ13C-DOC values (−23.7 ‰ to −20.6 ‰), the higher concentrations of protein-like FDOM, and the lower DOC∕DON (C∕N) ratios (8–15). In contrast, excess DOC observed in high-salinity waters in 2016 was characterized by low FDOM, more depleted δ13C values (−28.8 ‰ to −21.1 ‰), and high C∕N ratios (13–45), suggesting that the source of excess DOC is terrestrial C3 plants by direct land–seawater interactions. Our results show that multiple DOM tracers such as δ13C-DOC, FDOM, and C∕N ratios are powerful for determining different sources of DOM occurring in coastal waters.

2019 ◽  
Author(s):  
Shin-Ah Lee ◽  
Tae-Hoon Kim ◽  
Guebuem Kim

Abstract. The sources of dissolved organic matter (DOM) in coastal waters are diverse, and they play different roles in biogeochemistry and ecosystems. In this study, we measured dissolved organic carbon (DOC) and nitrogen (DON), δ13C-DOC, and fluorescent dissolved organic matter (FDOM) in coastal bay waters surrounded by heavily industrialized cities (Masan Bay, Korea) to determine the different DOM sources in this region. The surface seawater samples were collected in two sampling campaigns (Aug. 2011 and Aug. 2016). The salinities ranged from 10 to 21 in 2011 and from 25.4 to 32 in 2016. In 2011, the excess DOC was observed for higher-salinity waters (16–21), indicating its main source from marine autochthonous production according to the δ13C-DOC values of −23.7 ‰ to −20.6 ‰, higher concentrations of protein-like FDOM, and lower DOC / DON (C / N) ratios. By contrast, the high DOC waters in high-salinity waters of 2016 were characterized by low FDOM, more depleted δ13C values of −28.8 ‰ to −21.1 ‰, and high C / N ratios, suggesting that the excess DOC is influenced by direct land-seawater interactions. Our results show that multiple DOM tracers such as δ13C-DOC, FDOM, and C / N ratios are powerful for discriminating the complicated sources of DOM in coastal waters.


2013 ◽  
Vol 10 (2) ◽  
pp. 917-927 ◽  
Author(s):  
A. Matsuoka ◽  
S. B. Hooker ◽  
A. Bricaud ◽  
B. Gentili ◽  
M. Babin

Abstract. A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM) into CDOM and non-algal particles (NAP) through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012) showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.


2008 ◽  
Vol 5 (2) ◽  
pp. 281-298 ◽  
Author(s):  
P. Raimbault ◽  
N. Garcia ◽  
F. Cerutti

Abstract. During the BIOSOPE cruise the RV Atalante was dedicated to study the biogeochemical properties in the South Pacific between the Marquesas Islands (141° W–8° S) and the Chilean upwelling (73° W–34° S). Over the 8000 km covered by the cruise, several different trophic situations were encountered, in particular strong oligotrophic conditions in the South Pacific Gyre (SPG, between 123° W and 101° W). In this isolated region, nitrate was undetectable between the surface and 160–180 m and only trace quantities (<20 nmoles l−1) of regenerated nitrogen (nitrite and ammonium) were detected, even in the subsurface maximum. Integrated nitrate over the photic layer, which reached 165 m, was close to zero. Despite this severe nitrogen-depletion, phosphate was always present in significant concentrations (≈0.1 μmoles l−1), while silicic acid was maintained at low but classical oceanic levels (≈1 μmoles l−1). In contrast, the Marquesas region (MAR) to the west and Chilean upwelling (UPW) to the east were characterized by high nutrient concentrations, one hundred to one thousand fold higher than in the SPG. The distribution of surface chlorophyll reflected the nitrate gradient, the lowest concentrations (0.023 nmoles l−1) being measured at the centre of the SPG, where integrated value throughout the photic layer was very low (≈ 10 mg m−2). However, due to the relatively high concentrations of chlorophyll-a encountered in the DCM (0.2 μg l−1), chlorophyll-a concentrations throughout the photic layer were less variable than nitrate concentrations (by a factor 2 to 5). In contrast to chlorophyll-a, integrated particulate organic matter (POM) remained more or less constant along the study area (500 mmoles m−2, 60 mmoles m−2 and 3.5 mmoles m−2 for particulate organic carbon, particulate organic nitrogen and particulate organic phosphorus, respectively), with the exception of the upwelling, where values were two fold higher. The residence time of particulate carbon in the surface water was only 4–5 days in the upwelling, but up to 30 days in the SPG, where light isotopic δ15N signal noted in the suspended POM suggests that N2-fixation provides a dominant supply of nitrogen to phytoplankton. The most striking feature was the large accumulation of dissolved organic matter (DOM) in the SPG compared to the surrounding waters, in particular dissolved organic carbon (DOC) where concentrations were at levels rarely measured in oceanic waters (>100 μmoles l−1). Due to this large pool of DOM in the SPG photic layer, integrated values followed a converse geographical pattern to that of inorganic nutrients with a large accumulation in the centre of the SPG. Whereas suspended particulate matter in the mixed layer had a C/N ratio largely conforming to the Redfield stochiometry (C/N≈6.6), marked deviations were observed in this excess DOM (C/N≈16 to 23). The marked geographical trend suggests that a net in situ source exists, mainly due to biological processes. Thus, in spite of strong nitrate-depletion leading to low chlorophyll biomass, the closed ecosystem of the SPG can accumulate large amounts of C-rich dissolved organic matter. The implications of this finding are examined, the conclusion being that, due to weak lateral advection, the biologically produced dissolved organic carbon can be accumulated and stored in the photic layer for very long periods. In spite of the lack of seasonal vertical mixing, a significant part of new production (up to 34%), which was mainly supported by dinitrogen fixation, can be exported to deep waters by turbulent diffusion in terms of DOC. The diffusive rate estimated in the SPG (134 μmolesC m−2 d−1), was quite equivalent to the particles flux measured by sediments traps.


2020 ◽  
Author(s):  
Fred Worrall ◽  
Nicholas Howden ◽  
Timothy Burt

&lt;p&gt;Dissolved organic carbon (DOC) represents an important component of the terrestrial and fluvial carbon cycle as it represents a flux from terrestrial carbon stores and while it transfers through the fluvial network it can be processed to release greenhouse gases to the atmosphere. Furthermore, DOC is a major water resource limitation as the dissolved organic matter has to be removed prior to treatment. Therefore, we need to understand the concentration and fluxes of DOC and they change across a landscape between the terrestrial source and the tidal limit.&lt;/p&gt;&lt;p&gt;Our ability to understand the processing of terrestrial and fluvial carbon has been limited by the range of catchments that have been considered and the time scale over which they have been considered. Studies focused on similar catchment types and very little means of comparing between catchments. However, if we can access and understand large datasets we can find general principles which control DOC and the relative importance of these controls. In this study we use two datasets. The first, is a dataset sampled across the UK for major rivers (270 catchments) from 1974 and this dataset is ideal for understanding flux to the continental shelf and this dataset has over 50000 datapoints. Secondly, many of these sites are monitored for a rang e of other parameters that are related to the composition of the dissolved organic matter. The important covariates for DOM composition are BOD, which is a measure of DOM decomposition, and COD which is measure of the oxidation state of the DOM. All the study catchments could be characterised by a range of covariate information, eg. soil cover, land use, hydro-climatology. To make maximum use of this data the dataset was considered within a Bayesian hierarchical framework.&lt;/p&gt;&lt;p&gt;The concentrations of DOC from the UK rose for the 1974 on to the late 1990s before a decline to 2007-08. The decline was driven by changes in urban sources, particular by improvements in sewage treatment. The DOC flux from the UK has declined since a peak in 2000 and in 2017 was 767 ktonnes C/yr (95% credible interval 644 &amp;#8211; 909 ktonnesC/yr). Modelling composition turnover gives the DOC flux from source as 3.5 Mtonnes C/yr with 2.6 Mtonnes C/yr lost to atmosphere (14 Mtonnes CO&lt;sub&gt;2eq&lt;/sub&gt;/yr = 59 tonnes CO&lt;sub&gt;2eq&lt;/sub&gt;/km2/yr).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document