scholarly journals Nitrogen budgets following a Lagrangian strategy in the Western Tropical South Pacific Ocean: the prominent role of N<sub>2</sub> fixation (OUTPACE cruise)

Author(s):  
Mathieu Caffin ◽  
Thierry Moutin ◽  
Rachel Ann Foster ◽  
Pascale Bouruet-Aubertot ◽  
Andrea Michelangelo Doglioli ◽  
...  

Abstract. We performed N budgets at three stations in the western tropical South Pacific (WTSP) Ocean during austral summer conditions (Feb. Mar. 2015) and quantified all major N fluxes both entering the system (N2 fixation, nitrate eddy diffusion, atmospheric deposition) and leaving the system (PN export). Thanks to a Lagrangian strategy, we sampled the same water mass for the entire duration of each long duration (5 days) station, allowing to consider only vertical exchanges. Two stations located at the western end of the transect (Melanesian archipelago (MA) waters, LD A and LD B) were oligotrophic and characterized by a deep chlorophyll maximum (DCM) located at 51 ± 18 m and 81 ± 9 m at LD A and LD B. Station LD C was characterized by a DCM located at 132 ± 7 m, representative of the ultra-oligotrophic waters of the South Pacific gyre (SPG water). N2 fixation rates were extremely high at both LD A (593 ± 51 µmol N m−2 d−1) and LD B (706 ± 302 µmol N m−2 d−1), and the diazotroph community was dominated by Trichodesmium. N2 fixation rates were lower (59 ± 16 µmol N m−2 d−1) at LD C and the diazotroph community was dominated by unicellular N2-fixing cyanobacteria (UCYN). At all stations, N2 fixation was the major source of new N (> 90 %) before atmospheric deposition and upward nitrate fluxes induced by turbulence. N2 fixation contributed circa 8–12 % of primary production in the MA region and 3 % in the SPG water and sustained nearly all new primary production at all stations. The e-ratio (e-ratio = PC export/PP) was maximum at LD A (9.7 %) and was higher than the e-ratio in most studied oligotrophic regions (~ 1 %), indicating a high efficiency of the WTSP to export carbon relative to primary production. The direct export of diazotrophs assessed by qPCR of the nifH gene in sediment traps represented up to 30.6 % of the PC export at LD A, while there contribution was 5 and

2018 ◽  
Vol 15 (8) ◽  
pp. 2565-2585 ◽  
Author(s):  
Mathieu Caffin ◽  
Thierry Moutin ◽  
Rachel Ann Foster ◽  
Pascale Bouruet-Aubertot ◽  
Andrea Michelangelo Doglioli ◽  
...  

Abstract. We performed nitrogen (N) budgets in the photic layer of three contrasting stations representing different trophic conditions in the western tropical South Pacific (WTSP) Ocean during austral summer conditions (February–March 2015). Using a Lagrangian strategy, we sampled the same water mass for the entire duration of each long-duration (5 days) station, allowing us to consider only vertical exchanges for the budgets. We quantified all major vertical N fluxes both entering (N2 fixation, nitrate turbulent diffusion, atmospheric deposition) and leaving the photic layer (particulate N export). The three stations were characterized by a strong nitracline and contrasted deep chlorophyll maximum depths, which were lower in the oligotrophic Melanesian archipelago (MA, stations LD A and LD B) than in the ultra-oligotrophic waters of the South Pacific Gyre (SPG, station LD C). N2 fixation rates were extremely high at both LD A (593 ± 51 µmol N m−2 d−1) and LD B (706 ± 302 µmol N m−2 d−1), and the diazotroph community was dominated by Trichodesmium. N2 fixation rates were lower (59 ± 16 µmol N m−2 d−1) at LD C, and the diazotroph community was dominated by unicellular N2-fixing cyanobacteria (UCYN). At all stations, N2 fixation was the major source of new N (> 90 %) before atmospheric deposition and upward nitrate fluxes induced by turbulence. N2 fixation contributed circa 13–18 % of primary production in the MA region and 3 % in the SPG water and sustained nearly all new primary production at all stations. The e ratio (e ratio = particulate carbon export ∕ primary production) was maximum at LD A (9.7 %) and was higher than the e ratio in most studied oligotrophic regions (< 5 %), indicating a high efficiency of the WTSP to export carbon relative to primary production. The direct export of diazotrophs assessed by qPCR of the nifH gene in sediment traps represented up to 30.6 % of the PC export at LD A, while their contribution was 5 and < 0.1 % at LD B and LD C, respectively. At the three studied stations, the sum of all N input to the photic layer exceeded the N output through organic matter export. This disequilibrium leading to N accumulation in the upper layer appears as a characteristic of the WTSP during the summer season.


2007 ◽  
Vol 4 (4) ◽  
pp. 2407-2440 ◽  
Author(s):  
T. Moutin ◽  
D. M. Karl ◽  
S. Duhamel ◽  
P. Rimmelin ◽  
P. Raimbault ◽  
...  

Abstract. Due to the low atmospheric input of phosphate into the open ocean, it is one of the key nutrients that could ultimately control primary production and carbon export into the deep ocean. The observed trend over the last 20 years, has shown a decrease in the dissolved inorganic phosphate (DIP) pool in the North Pacific gyre, which has been correlated to the increase in di-nitrogen (N2) fixation rates. Following a NW-SE transect, in the Southeast Pacific during the early austral summer (BIOSOPE cruise), we present data on DIP, dissolved organic phosphate (DOP), and particulate phosphate (PP) pools and DIP turnover times (TDIP) along with N2 fixation rates. We observed a decrease in DIP concentration from the edges to the centre of the gyre. Nevertheless the DIP concentrations remained above 100 nmol L−1 and TDIP were more than a month in the centre of the gyre: DIP availability remained largely above the level required for phosphate limitation. This contrasts with recent observations in the western Pacific Ocean at the same latitude (DIAPALIS cruises) where lower DIP concentrations (<20 nmol L−1) and TDIP<50 h were measured during the summer season. During the BIOSOPE cruise, N2 fixation rates were higher within the cold water upwelling near the Chilean coast. This observation contrasts with recently obtained model output for N2 fixation distribution in the South Pacific area and emphasises the importance of studying the main factors controlling this process. The South Pacific gyre can be considered a High P Low Chlorophyll (HPLC) oligotrophic area, which could potentially support high N2 fixation rates, and possibly carbon dioxide sequestration, if the primary ecophysiological controls, temperature and/or iron availability, were alleviated.


2015 ◽  
Vol 12 (17) ◽  
pp. 14441-14479
Author(s):  
B. Su ◽  
M. Pahlow ◽  
A. Oschlies

Abstract. Both atmospheric deposition and benthic remineralization influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations of the eastern tropical South Pacific (ETSP) to nitrogen deposition, benthic denitrification and phosphate regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycles in the ETSP. In the model, atmospheric nitrogen deposition based on estimates for the years 2000–2009 is offset by half by reduced N2 fixation, with the other half transported out of the model domain. Both model- and data-based benthic denitrification are found to trigger nitrogen fixation, partly compensating for the NO3− loss. Since phosphate is the ultimate limiting nutrient in the model, enhanced sedimentary phosphate regeneration under suboxic conditions stimulates primary production and subsequent export production and NO3− loss in the oxygen minimum zone (OMZ). A sensitivity analysis of the local response to both atmospheric deposition and benthic remineralization indicates dominant stabilizing feedbacks in the ETSP, which tend to keep a balanced nitrogen inventory, i.e., nitrogen input by atmospheric deposition is counteracted by decreasing nitrogen fixation; NO3− loss via benthic denitrification is partly compensated by increased nitrogen fixation; enhanced nitrogen fixation stimulated by phosphate regeneration is partly removed by the stronger water-column denitrification. Even though the water column in our model domain acts as a NO3− source, the ETSP including benthic denitrification might become a NO3− sink.


2018 ◽  
Vol 15 (9) ◽  
pp. 2961-2989 ◽  
Author(s):  
Thierry Moutin ◽  
Thibaut Wagener ◽  
Mathieu Caffin ◽  
Alain Fumenia ◽  
Audrey Gimenez ◽  
...  

Abstract. Surface waters (0–200 m) of the western tropical South Pacific (WTSP) were sampled along a longitudinal 4000 km transect (OUTPACE cruise, DOI: 10.17600/15000900) during the austral summer (stratified) period (18 February to 3 April 2015) between the Melanesian Archipelago (MA) and the western part of the SP gyre (WGY). Two distinct areas were considered for the MA, the western MA (WMA), and the eastern MA (EMA). The main carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes provide a basis for the characterization of the expected trend from oligotrophy to ultra-oligotrophy, and the building of first-order budgets at the daily and seasonal timescales (using climatology). Sea surface chlorophyll a well reflected the expected oligotrophic gradient with higher values obtained at WMA, lower values at WGY, and intermediate values at EMA. As expected, the euphotic zone depth, the deep chlorophyll maximum, and nitracline depth deepen from west to east. Nevertheless, phosphaclines and nitraclines did not match. The decoupling between phosphacline and nitracline depths in the MA allows for excess P to be locally provided in the upper water by winter mixing. We found a significant biological “soft tissue” carbon pump in the MA sustained almost exclusively by dinitrogen (N2) fixation and essentially controlled by phosphate availability in this iron-rich environment. The MA appears to be a net sink for atmospheric CO2, while the WGY is in quasi-steady state. We suggest that the necessary excess P, allowing the success of nitrogen fixers and subsequent carbon production and export, is mainly brought to the upper surface by local deep winter convection at an annual timescale rather than by surface circulation. While the origin of the decoupling between phosphacline and nitracline remains uncertain, the direct link between local P upper water enrichment, N2 fixation, and organic carbon production and export, offers a possible shorter timescale than previously thought between N input by N2 fixation and carbon export. The low iron availability in the SP gyre and P availability in the MA during the stratified period may appear as the ultimate control of N input by N2 fixation. Because of the huge volume of water to consider, and because the SP Ocean is the place of intense denitrification in the east (N sink) and N2 fixation in the west (N source), precise seasonal C, N, P, and iron (Fe) budgets would be of prime interest to understand the efficiency, at the present time and in the future, of the oceanic biological carbon pump.


2018 ◽  
Vol 15 (13) ◽  
pp. 4215-4232 ◽  
Author(s):  
Sophie Bonnet ◽  
Mathieu Caffin ◽  
Hugo Berthelot ◽  
Olivier Grosso ◽  
Mar Benavides ◽  
...  

Abstract. Here we report N2 fixation rates from a ∼ 4000 km transect in the western and central tropical South Pacific, a particularly undersampled region in the world ocean. Water samples were collected in the euphotic layer along a west to east transect from 160∘ E to 160∘ W that covered contrasting trophic regimes, from oligotrophy in the Melanesian archipelago (MA) waters to ultra-oligotrophy in the South Pacific Gyre (GY) waters. N2 fixation was detected at all 17 sampled stations with an average depth-integrated rate of 631 ± 286 µmolNm-2d-1 (range 196–1153 µmolNm-2d-1) in MA waters and of 85 ± 79 µmolNm-2d-1 (range 18–172 µmolNm-2d-1) in GY waters. Two cyanobacteria, the larger colonial filamentous Trichodesmium and the smaller UCYN-B, dominated the enumerated diazotroph community (> 80 %) and gene expression of the nifH gene (cDNA > 105 nifH copies L−1) in MA waters. Single-cell isotopic analyses performed by nanoscale secondary ion mass spectrometry (nanoSIMS) at selected stations revealed that Trichodesmium was always the major contributor to N2 fixation in MA waters, accounting for 47.1–83.8 % of bulk N2 fixation. The most plausible environmental factors explaining such exceptionally high rates of N2 fixation in MA waters are discussed in detail, emphasizing the role of macro- and micro-nutrient (e.g., iron) availability, seawater temperature and currents.


2018 ◽  
Author(s):  
Mar Benavides ◽  
Katyanne M. Shoemaker ◽  
Pia H. Moisander ◽  
Jutta Niggemann ◽  
Thorsten Dittmar ◽  
...  

Abstract. The western tropical South Pacific (WTSP) Ocean has been recognized as a global hotspot of dinitrogen (N2) fixation. Here, as in other marine environments across the oceans, N2 fixation studies have focused in the sunlit layer. However, studies have confirmed the importance of aphotic N2 fixation activity, although until now only one had been performed in the WTSP. In order to increase our knowledge of aphotic N2 fixation in the WTSP, here we measure N2 fixation rates and identify diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. Because non-cyanobacterial diazotrophs presumably need external dissolved organic matter (DOM) sources for their nutrition, we also identified DOM compounds using Fourier Transform Ion Cyclotron Mass Spectrometry (FTICRMS). N2 fixation rates were low (average 0.63 ± 0.07 nmol N L−1 d−1), but consistently detected across all depths and stations, representing ~ 6–88 % of photic N2 fixation. N2 fixation rates were not significantly correlated to DOM compounds. The analysis of nifH gene amplicons revealed a wide diversity of non-cyanobacterial diazotrophs, majorly matching clusters 1 and 3. Interestingly, a distinct phylotype from the major nifH subcluster 1G dominated at 650 dbar, coinciding with the oxygenated Sub-Antarctic Mode Water (SAMW). This consistent pattern suggests that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure. While the data available is still too scarce to elucidate the distribution and controls of mesopelagic non-cyanobacterial diazotrophs in the WTSP, their prevalence in the mesopelagic layer and the consistent detection of active N2 fixation activity at all depths sampled during our study suggest that aphotic N2 fixation may contribute significantly to fixed nitrogen inputs in this area.


2020 ◽  
Vol 367 (4) ◽  
Author(s):  
Mar Benavides ◽  
Solange Duhamel ◽  
France Van Wambeke ◽  
Katyanne M Shoemaker ◽  
Pia H Moisander ◽  
...  

ABSTRACT Mixotrophy, the combination of heterotrophic and autotrophic nutrition modes, is emerging as the rule rather than the exception in marine photosynthetic plankton. Trichodesmium, a prominent diazotroph ubiquitous in the (sub)tropical oceans, is generally considered to obtain energy via autotrophy. While the ability of Trichodesmium to use dissolved organic phosphorus when deprived of inorganic phosphorus sources is well known, the extent to which this important cyanobacterium may benefit from other dissolved organic matter (DOM) resources is unknown. Here we provide evidence of carbon-, nitrogen- and phosphorus-rich DOM molecules enhancing N2 fixation rates and nifH gene expression in natural Trichodesmium colonies collected at two stations in the western tropical South Pacific. Sampling at a third station located in the oligotrophic South Pacific Gyre revealed no Trichodesmium but showed presence of UCYN-B, although no nifH expression was detected. Our results suggest that Trichodesmium behaves mixotrophically in response to certain environmental conditions, providing them with metabolic plasticity and adding up to the view that mixotrophy is widespread among marine microbes.


2018 ◽  
Author(s):  
Audrey Gimenez ◽  
Melika Baklouti ◽  
Thierry Moutin

Abstract. The Oligotrophy to UlTra-oligotrophy PACific Experiment (OUTPACE) cruise took place in the Western Tropical South Pacific (WTSP) during the austral summer (March–April 2015). The aim of the OUTPACE project is to investigate a longitudinal gradient of biological and biogeochemical features in the WTSP, and especially the role of N2 fixation on the C, N, P cycles. Two contrasted regions were considered: the Western Melanesian Archipelago (WMA), characterized by high N2 fixation rates, significant surface production and low dissolved inorganic phosphorus (DIP) concentrations, and the Western south Pacific GYre (WGY), characterized by very low N2 fixation rates, low surface production rates and high DIP concentrations. A one-dimensional biogeochemical – physical coupled model was used to investigate the role of N2 fixation in the WTSP by running two identical simulations, only differing by the presence or not of diazotrophs. We evidenced that the nitracline and the phosphacline had to be respectively deeper and shallower than the Mixed-Layer Depth (MLD) to bring N-depleted and P-repleted waters to the surface during winter mixing, thereby creating favorable conditions for the development of diazotrophs. We also concluded that a preferential regeneration of the detrital phosphorus (P) matter was necessary to obtain this gap between the nitracline and the phosphacline depths, as the nutricline depths significantly depend on the regeneration of organic matter in the water column. Moreover, the model enabled us to highlight the presence of seasonal variations in upper surface waters in the simulation standing for WMA, where diazotrophs provided a new source of nitrogen (N) to their ecosystem, whereas no seasonal variations were obtained in the simulation standing for WGY, in absence of diazotrophs. These main results emphasized the fact that surface production dynamics in the WTSP is based on a complex and sensitive system which depends on N2 fixation in a crucial way.


2018 ◽  
Vol 15 (23) ◽  
pp. 7273-7297 ◽  
Author(s):  
François Carlotti ◽  
Marc Pagano ◽  
Loïc Guilloux ◽  
Katty Donoso ◽  
Valentina Valdés ◽  
...  

Abstract. The western tropical South Pacific (WTSP) is one of the most understudied oceanic regions in terms of the planktonic food web, despite supporting some of the largest tuna fisheries in the world. In this stratified oligotrophic ocean, nitrogen fixation may play an important role in supporting the plankton food web and higher trophic level production. In the austral summer (February–April) of 2015, the OUTPACE (Oligotrophy to UlTra-oligotrophy PACific Experiment) project conducted a comprehensive survey of 4000 km along 20∘ S, from New Caledonia to Tahiti, to determine the role of N2 fixation on biogeochemical cycles and food web structure in this region. Here, we characterize the zooplankton community and plankton food web processes at 15 short-duration stations (8 h each) to describe the large-scale variability across trophic gradients from oligotrophic waters around Melanesian archipelagoes (MAs) to ultra-oligotrophic waters of the South Pacific gyre (GY). Three long-duration stations (5 days each) enabled a more detailed analysis of processes and were positioned (1) in offshore northern waters of New Caledonia (MA), (2) near Niue Island (MA), and (3) in the subtropical Pacific gyre (GY) near the Cook Islands. At all stations, meso-zooplankton was sampled with a bongo net with 120 µm mesh size to estimate abundance, biomass, community taxonomy and size structure, and size fractionated δ15N. Subsequently, we estimated zooplankton carbon demand, grazing impact, excretion rates, and the contribution of diazotroph-derived nitrogen (DDN) to zooplankton biomass. The meso-zooplankton community showed a general decreasing trend in abundance and biomass from west to east, with a clear drop in the GY waters. Higher abundance and biomass corresponded to higher primary production associated with complex mesoscale circulation in the Coral Sea and between 170–180∘ W. The taxonomic structure showed a high degree of similarity in terms of species richness and abundance distribution across the whole region, with, however, a moderate difference in the GY region, where the copepod contribution to meso-zooplankton increased. The calculated ingestion and metabolic rates allowed us to estimate that the top–down (grazing) and bottom–up (excretion of nitrogen and phosphorous) impact of zooplankton on phytoplankton was potentially high. Daily grazing pressure on phytoplankton stocks was estimated to remove 19 % to 184 % of the total daily primary production and 1.5 % to 22 % of fixed N2. The top–down impact of meso-zooplankton was higher in the eastern part of the transect, including GY, than in the Coral Sea region and was mainly exerted on nano- and micro-phytoplankton. The regeneration of nutrients by zooplankton excretion was high, suggesting a strong contribution to regenerated production, particularly in terms of N. Daily NH4+ excretion accounted for 14.5 % to 165 % of phytoplankton needs for N, whereas PO43- excretion accounted for only 2.8 % to 34 % of P needs. From zooplankton δ15N values, we estimated that the DDN contributed to up to 67 % and 75 % to the zooplankton biomass in the western and central parts of the MA regions, respectively, but strongly decreased to an average of 22 % in the GY region and down to 7 % in the easternmost station. Thus, the highest contribution of diazotrophic microorganisms to zooplankton biomass occurred in the region of highest N2 fixation rates and when Trichodesmium dominated the diazotrophs community (MA waters). Our estimations of the fluxes associated with zooplankton were highly variable between stations and zones but very high in most cases compared to literature data, partially due to the high contribution of small forms. The highest values encountered were found at the boundary between the oligotrophic (MA) and ultra-oligotrophic regions (GY). Within the MA zone, the high variability of the top–down and bottom–up impact was related to the high mesoscale activity in the physical environment. Estimated zooplankton respiration rates relative to primary production were among the highest cited values at similar latitudes, inducing a high contribution of migrant zooplankton respiration to carbon flux. Despite the relatively low biomass values of planktonic components in quasi-steady state, the availability of micro- and macronutrients related to physical mesoscale patterns in the waters surrounding the MA, the fueling by DDN, and the relatively high rates of plankton production and metabolism estimated during OUTPACE may explain the productive food chain ending with valuable fisheries in this region.


Sign in / Sign up

Export Citation Format

Share Document