scholarly journals Space-Time Sea Surface pCO2 Estimation in the North Atlantic Based on CatBoost

2021 ◽  
Vol 13 (14) ◽  
pp. 2805
Author(s):  
Hongwei Sun ◽  
Junyu He ◽  
Yihui Chen ◽  
Boyu Zhao

Sea surface partial pressure of CO2 (pCO2) is a critical parameter in the quantification of air–sea CO2 flux, which plays an important role in calculating the global carbon budget and ocean acidification. In this study, we used chlorophyll-a concentration (Chla), sea surface temperature (SST), dissolved and particulate detrital matter absorption coefficient (Adg), the diffuse attenuation coefficient of downwelling irradiance at 490 nm (Kd) and mixed layer depth (MLD) as input data for retrieving the sea surface pCO2 in the North Atlantic based on a remote sensing empirical approach with the Categorical Boosting (CatBoost) algorithm. The results showed that the root mean square error (RMSE) is 8.25 μatm, the mean bias error (MAE) is 4.92 μatm and the coefficient of determination (R2) can reach 0.946 in the validation set. Subsequently, the proposed algorithm was applied to the sea surface pCO2 in the North Atlantic Ocean during 2003–2020. It can be found that the North Atlantic sea surface pCO2 has a clear trend with latitude variations and have strong seasonal changes. Furthermore, through variance analysis and EOF (empirical orthogonal function) analysis, the sea surface pCO2 in this area is mainly affected by sea temperature and salinity, while it can also be influenced by biological activities in some sub-regions.

Author(s):  
Hongwei Sun ◽  
Yihui Chen ◽  
Lin Li ◽  
Yihui Chen

Sea surface partial pressure of CO2 (pCO2) is a critical parameter in the quantification of air-sea CO2 flux, which plays an important role in calculating the global carbon budget and ocean acidification. In this study, we use chlorophyll-a concentration (Chla), sea surface temperature (SST), absorption due to dissolved and particulate detrital matter (Adg), diffuse attenuation coefficient of downwelling irradiance at 490nm (Kd) and mixed layer depth (MLD) as input data for retrieving the sea surface pCO2 in the North Atlantic based on a remote sensing empirical approach with the Categorical Boosting (CatBoost) algorithm. The results show that the root mean square error (RMSE) is 8.25μatm, the mean bias error (MAE) is 4.92μatm and the coefficient of determination (R2) can reach 0.946 in the validation set, which mean that the CatBoost model makes an improvement compared to other models in the published studies. In the further analysis of the spatial and temporal distribution of the sea surface pCO2 in the North Atlantic, it can be found that the North Atlantic sea surface pCO2 has a clear trend with latitude variations and have strong seasonal changes. Furthermore, the sea surface pCO2 in this area is mainly affected by sea temperature and salinity, and influenced by biological activities in some sub-regions.


1994 ◽  
Vol 126 (4) ◽  
pp. 275-287 ◽  
Author(s):  
Edouard Bard ◽  
Maurice Arnold ◽  
Jan Mangerud ◽  
Martine Paterne ◽  
Laurent Labeyrie ◽  
...  

2007 ◽  
Vol 20 (3) ◽  
pp. 436-448 ◽  
Author(s):  
Ronald J. Stouffer ◽  
Dan Seidov ◽  
Bernd J. Haupt

Abstract The response of an atmosphere–ocean general circulation model (AOGCM) to perturbations of freshwater fluxes across the sea surface in the North Atlantic and Southern Ocean is investigated. The purpose of this study is to investigate aspects of the so-called bipolar seesaw where one hemisphere warms and the other cools and vice versa due to changes in the ocean meridional overturning. The experimental design is idealized where 1 Sv (1 Sv ≡ 106 m3 s−1) of freshwater is added to the ocean surface for 100 model years and then removed. In one case, the freshwater perturbation is located in the Atlantic Ocean from 50° to 70°N. In the second case, it is located south of 60°S in the Southern Ocean. In the case where the North Atlantic surface waters are freshened, the Atlantic thermohaline circulation (THC) and associated northward oceanic heat transport weaken. In the Antarctic surface freshening case, the Atlantic THC is mainly unchanged with a slight weakening toward the end of the integration. This weakening is associated with the spreading of the fresh sea surface anomaly from the Southern Ocean into the rest of the World Ocean. There are two mechanisms that may be responsible for such weakening of the Atlantic THC. First is that the sea surface salinity (SSS) contrast between the North Atlantic and North Pacific is reduced. And, second, when freshwater from the Southern Ocean reaches the high latitudes of the North Atlantic Ocean, it hinders the sinking of the surface waters, leading to the weakening of the THC. The spreading of the fresh SSS anomaly from the Southern Ocean into the surface waters worldwide was not seen in earlier experiments. Given the geography and climatology of the Southern Hemisphere where the climatological surface winds push the surface waters northward away from the Antarctic continent, it seems likely that the spreading of the fresh surface water anomaly could occur in the real world. A remarkable symmetry between the two freshwater perturbation experiments in the surface air temperature (SAT) response can be seen. In both cases, the hemisphere with the freshwater perturbation cools, while the opposite hemisphere warms slightly. In the zonally averaged SAT figures, both the magnitude and the pattern of the anomalies look similar between the two cases. The oceanic response, on the other hand, is very different for the two freshwater cases, as noted above for the spreading of the SSS anomaly and the associated THC response. If the differences between the atmospheric and oceanic responses apply to the real world, then the interpretation of paleodata may need to be revisited. To arrive at a correct interpretation, it matters whether or not the evidence is mainly of atmospheric or oceanic origin. Also, given the sensitivity of the results to the exact details of the freshwater perturbation locations, especially in the Southern Hemisphere, a more realistic scenario must be constructed to explore these questions.


2020 ◽  
Vol 33 (1) ◽  
pp. 201-212
Author(s):  
G. Wolf ◽  
A. Czaja ◽  
D. J. Brayshaw ◽  
N. P. Klingaman

AbstractLarge-scale, quasi-stationary atmospheric waves (QSWs) are known to be strongly connected with extreme events and general weather conditions. Yet, despite their importance, there is still a lack of understanding about what drives variability in QSW. This study is a step toward this goal, and it identifies three statistically significant connections between QSWs and sea surface anomalies (temperature and ice cover) by applying a maximum covariance analysis technique to reanalysis data (1979–2015). The two most dominant connections are linked to El Niño–Southern Oscillation and the North Atlantic Oscillation. They confirm the expected relationship between QSWs and anomalous surface conditions in the tropical Pacific and the North Atlantic, but they cannot be used to infer a driving mechanism or predictability from the sea surface temperature or the sea ice cover to the QSW. The third connection, in contrast, occurs between late winter to early spring Atlantic sea ice concentrations and anomalous QSW patterns in the following late summer to early autumn. This new finding offers a pathway for possible long-term predictability of late summer QSW occurrence.


Sign in / Sign up

Export Citation Format

Share Document