scholarly journals Review on ‘Interactive effects of seawater carbonate chemistry, light intensity and nutrient availability on physiology and calcification of the coccolithophore Emiliania huxleyi’ by Zhang et al.

2018 ◽  
Author(s):  
Anonymous
2014 ◽  
Vol 11 (10) ◽  
pp. 2857-2869 ◽  
Author(s):  
K. J. S. Meier ◽  
L. Beaufort ◽  
S. Heussner ◽  
P. Ziveri

Abstract. Ocean acidification is a result of the uptake of anthropogenic CO2 from the atmosphere into the ocean and has been identified as a major environmental and economic threat. The release of several thousands of petagrams of carbon over a few hundred years will have an overwhelming effect on surface ocean carbon reservoirs. The recorded and anticipated changes in seawater carbonate chemistry will presumably affect global oceanic carbonate production. Coccolithophores as the primary calcifying phytoplankton group, and especially Emiliania huxleyi as the most abundant species have shown a reduction of calcification at increased CO2 concentrations for the majority of strains tested in culture experiments. A reduction of calcification is associated with a decrease in coccolith weight. However, the effect in monoclonal cultures is relatively small compared to the strong variability displayed in natural E. huxleyi communities, as these are a mix of genetically and sometimes morphologically distinct types. Average coccolith weight is likely influenced by the variability in seawater carbonate chemistry in different parts of the world's oceans and on glacial/interglacial time scales due to both physiological effects and morphotype selectivity. An effect of the ongoing ocean acidification on E. huxleyi calcification has so far not been documented in situ. Here, we analyze E. huxleyi coccolith weight from the NW Mediterranean Sea in a 12-year sediment trap series, and surface sediment and sediment core samples using an automated recognition and analyzing software. Our findings clearly show (1) a continuous decrease in the average coccolith weight of E. huxleyi from 1993 to 2005, reaching levels below pre-industrial (Holocene) and industrial (20th century) values recorded in the sedimentary record and (2) seasonal variability in coccolith weight that is linked to the coccolithophore productivity. The observed long-term decrease in coccolith weight is most likely a result of the changes in the surface ocean carbonate system. Our results provide the first indications of an in situ impact of ocean acidification on coccolithophore weight in a natural E. huxleyi population, even in the highly alkaline Mediterranean Sea.


2012 ◽  
Vol 9 (8) ◽  
pp. 3449-3463 ◽  
Author(s):  
L. T. Bach ◽  
C. Bauke ◽  
K. J. S. Meier ◽  
U. Riebesell ◽  
K. G. Schulz

Abstract. The coccolithophore Emiliania huxleyi is a marine phytoplankton species capable of forming small calcium carbonate scales (coccoliths) which cover the organic part of the cell. Calcification rates of E. huxleyi are known to be sensitive to changes in seawater carbonate chemistry. It has, however, not yet been clearly determined how these changes are reflected in size and weight of individual coccoliths and which specific parameter(s) of the carbonate system drive morphological modifications. Here, we compare data on coccolith size, weight, and malformation from a set of five experiments with a large diversity of carbonate chemistry conditions. This diversity allows distinguishing the influence of individual carbonate chemistry parameters such as carbon dioxide (CO2), bicarbonate (HCO3−), carbonate ion (CO32−), and protons (H+) on the measured parameters. Measurements of fine-scale morphological structures reveal an increase of coccolith malformation with decreasing pH suggesting that H+ is the major factor causing malformations. Coccolith distal shield area varies from about 5 to 11 μm2. Changes in size seem to be mainly induced by varying [HCO3−] and [H+] although influence of [CO32−] cannot be entirely ruled out. Changes in coccolith weight were proportional to changes in size. Increasing CaCO3 production rates are reflected in an increase in coccolith weight and an increase of the number of coccoliths formed per unit time. The combined investigation of morphological features and coccolith production rates presented in this study may help to interpret data derived from sediment cores, where coccolith morphology is used to reconstruct calcification rates in the water column.


2018 ◽  
Author(s):  
Yong Zhang ◽  
Feixue Fu ◽  
David A. Hutchins ◽  
Kunshan Gao

Abstract. Rising atmospheric carbonate dioxide (CO2) levels lead to increasing CO2 concentration and declining pH in seawater, as well as ocean warming. This enhances stratification and shoals the upper mixed layer (UML), hindering the transport of nutrients from deeper waters and exposing phytoplankton to increased light intensities. In the present study, we investigated combined impacts of CO2 levels (410 μatm (LC) and 925 μatm (HC)), light intensities (80–480 μmol photons m−2 s−1) and nutrient concentrations [101 μmol L−1 dissolved inorganic nitrogen (DIN) and 10.5 μmol L−1 dissolved inorganic phosphate (DIP) (HNHP); 8.8 μmol L−1 DIN and 10.5 μmol L−1 DIP (LN); 101 μmol L−1 DIN and 0.4 μmol L−1 DIP (LP)] on growth, photosynthesis and calcification of the coccolithophore Emiliania huxleyi. HC and LN synergistically decreased growth rates of E. huxleyi at all light intensities. High light intensities compensated for inhibition of LP on growth rates at LC, but exacerbated inhibition of LP at HC. These results indicate that the ability of E. huxleyi to compete for nitrate and phosphate may be reduced in future oceans with high CO2 and high light intensities. Low nutrient concentrations increased particulate inorganic carbon quotas and the sensitivity of maximum electron transport rates to light intensity. Light-use efficiencies for carbon fixation and calcification rates were significantly larger than that of growth. Our results suggest that interactive effects of multiple environmental factors on coccolithophores need to be considered when predicting their contributions to the biological carbon pump and feedbacks to climate change.


2019 ◽  
Author(s):  
Giulia Faucher ◽  
Ulf Riebesell ◽  
Lennart Thomas Bach

Abstract. Morphological changes in coccoliths, tiny calcite platelets covering the outer surface of coccolithophores, can be the result of physiological responses to environmental changes. Coccoliths recovered from sedimentary successions may therefore provide information on paleo-environmental conditions prevailing at the time when the coccolithophores were alive. To calibrate the biomineralization responses of ancient coccolithophore to climatic changes studies often compared the biological responses of living coccolithophore species with paleo-data from calcareous nannofossils. However, there is uncertainty whether the morphological responses of living coccolithophores are representative for those of the fossilized ancestors. To investigate this, we cultured four living coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica, Coccolithus pelagicus subsp. braarudii, and Pleurochrysis carterae) that have been evolutionarily distinct for millions of years, exposed them to changing environmental conditions (i.e. changing light intensity, Mg / Ca ratio, nutrient availability, temperature and carbonate chemistry) and evaluated their responses in coccolith morphology (i.e. size, length, width, malformation). The motivation for this study was that if the species show the same morphological response to changes in any of the tested abiotic environmental factors, then there is a reason to assume that this response is conserved over geological timescales and that coccolith morphology can serve as a paleo-proxy for that specific factor. In contrast with this concept, we found that the four species responded differently to changing light intensity, Mg / Ca ratio, nutrient availability and temperature in terms of coccolith morphology. The lack of a common response reveals the difficulties in using coccolith morphology as a proxy for paleo-environmental conditions. However, a common response was observed under changing seawater carbonate chemistry (i.e. rising CO2) which consistently induced malformations. This commonality provides some confidence that malformations found in the sedimentary record could be indicative for high CO2 levels.


2009 ◽  
Vol 6 (3) ◽  
pp. 4739-4763 ◽  
Author(s):  
J. Barcelos e Ramos ◽  
M. N. Müller ◽  
U. Riebesell

Abstract. The response of the coccolithophore Emiliania huxleyi to rising CO2 concentrations is well documented in acclimated cultures where cells are exposed to the CO2 treatments for several generations prior to the experiment. Extended acclimation times have generally been applied because of the lack of information about time required to reach a new physiological "equilibrium" (acclimation) in response to CO2-induced changes in seawater carbonate chemistry. Here we show that Emiliania huxleyi's short-term response (hours to 1 day) to increasing CO2 is similar to that obtained with acclimated cultures under comparable conditions in earlier studies. At CO2 concentrations ranging from glacial (190 μatm) to projected year 2100 (750 μatm) levels, calcification decreased and organic carbon fixation increased within 8 h after exposing the cultures to the changed CO2 conditions. This led to a decrease in the ratio of CaCO3 to organic carbon production. Our results show that Emiliania huxleyiapidly alters the rates of various essential processes in response to changes in seawater carbonate chemistry, establishing a new physiological (acclimation) "state" within a matter of hours. If this relatively rapid response applies to other phytoplankton species, it may simplify interpretation of studies with natural communities (e.g. mesocosm studies and ship-board incubations), where often it is not feasible to allow for a pre-conditioning phase before starting experimental incubations.


2010 ◽  
Vol 7 (1) ◽  
pp. 177-186 ◽  
Author(s):  
J. Barcelos e Ramos ◽  
M. N. Müller ◽  
U. Riebesell

Abstract. The response of the coccolithophore Emiliania huxleyi to rising CO2 concentrations is well documented for acclimated cultures where cells are exposed to the CO2 treatments for several generations prior to the experiment. The exact number of generations required for acclimation to CO2-induced changes in seawater carbonate chemistry, however, is unknown. Here we show that Emiliania huxleyi's short-term response (26 h) after cultures (grown at 500 μatm) were abruptly exposed to changed CO2 concentrations (~190, 410, 800 and 1500 μatm) is similar to that obtained with acclimated cultures under comparable conditions in earlier studies. Most importantly, from the lower CO2 levels (190 and 410 μatm) to 750 and 1500 μatm calcification decreased and organic carbon fixation increased within the first 8 to 14 h after exposing the cultures to changes in carbonate chemistry. This suggests that Emiliania huxleyi rapidly alters the rates of essential metabolical processes in response to changes in seawater carbonate chemistry, establishing a new physiological "state" (acclimation) within a matter of hours. If this relatively rapid response applies to other phytoplankton species, it may simplify interpretation of studies with natural communities (e.g. mesocosm studies and ship-board incubations), where often it is not feasible to allow for a pre-conditioning phase before starting experimental incubations.


2013 ◽  
Vol 10 (12) ◽  
pp. 19701-19730 ◽  
Author(s):  
K. J. S. Meier ◽  
L. Beaufort ◽  
S. Heussner ◽  
P. Ziveri

Abstract. Ocean acidification is a result of the uptake of anthropogenic CO2 from the atmosphere into the ocean and has been identified as a major environmental and economic threat. The release of several thousands of petagrams of carbon over a few hundred years will overwhelm the capacity of the surface ocean reservoirs to absorb carbon. The recorded and anticipated changes in seawater carbonate chemistry will presumably affect the global oceanic carbonate production. Coccolithophores as the primary calcifying phytoplankton group, and especially Emiliania huxleyi as the most abundant species have shown a reduction of calcification at increased CO2 concentrations for the majority of strains tested in culture experiments. A reduction of calcification is associated with a decrease in coccolith weight. However, the effect in monoclonal cultures is relatively small compared to the strong variability displayed in natural E. huxleyi communities, as these are a mix of genetically and sometimes morphologically distinct types. Average coccolith weight is likely influenced by the variability in seawater carbonate chemistry in different parts of the worlds' oceans and on glacial/interglacial time scales due to both physiological effects and morphotype selectivity. An effect of the ongoing ocean acidification on E. huxleyi calcification has so far not been documented in situ. Here, we analyze E. huxleyi coccolith weight from the NW Mediterranean Sea in a 12 yr sediment trap series, and surface sediment and sediment core samples using an automated recognition and analyzing software. Our findings clearly show (1) a continuous decrease in the average coccolith weight of E. huxleyi from 1993 to 2005, reaching levels below pre-industrial Holocene and industrial 20th century values recorded in the sedimentary record, and (2) seasonal variability in coccolith weight that is linked to the coccolithophore production. The observed long-term decrease in coccolith weight is most likely a result of the changes in the surface ocean carbonate system. Our results provide first indications of an in situ impact of ocean acidification on coccolithophore weight in a natural E. huxleyi population even in the highly alkaline Mediterranean Sea.


2013 ◽  
Vol 10 (6) ◽  
pp. 9285-9313 ◽  
Author(s):  
M. T. Horigome ◽  
P. Ziveri ◽  
M. Grelaud ◽  
K.-H. Baumann ◽  
G. Marino ◽  
...  

Abstract. Although ocean acidification is expected to impact (bio)calcification by decreasing the seawater carbonate ion concentration, [CO32−], there exists evidence of non-uniform response of marine calcifying plankton to low seawater [CO32−]. This raises questions on the role of environmental factors other than acidification and on the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including temperature, nutrient (nitrate and phosphate) availability, and seawater carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying well above the modern lysocline. The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of phosphorus and temperature in determining coccolith mass by affecting primary calcification and possibly driving the E. huxleyi morphotype distribution. This evidence does not necessarily argue against the potentially important role of the rapidly changing seawater carbonate chemistry in the future, when unabated fossil fuel burning will likely perturb ocean chemistry beyond a critical point. Rather our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high CO2 world and improve interpretation of paleorecords.


Sign in / Sign up

Export Citation Format

Share Document