scholarly journals Rare Earth Elements in oyster shells: provenance discrimination and potential vital effects

2019 ◽  
Author(s):  
Vincent Mouchi ◽  
Camille Godbillot ◽  
Vianney Forest ◽  
Alexey Ulianov ◽  
Franck Lartaud ◽  
...  

Abstract. Rare Earth Elements and yttrium (REY) in seawater originate from atmospheric fallout, continental weathering, and transport from rivers, as well as hydrothermal activity. Previous studies reported the use of REY measurements in biogenic carbonates as a means to reconstruct these surface processes in ancient times. As coastal seawater REY concentrations partially reflect those of nearby rivers, it may be possible to obtain a regional fingerprint of these concentrations from bivalve shells for provenance and environmental monitoring studies. Here, we present a dataset of 260 measurements of REY abundances by LA-ICP-MS from 42 oyster specimens from six locations in France (Atlantic Ocean and Mediterranean Sea), and from two species (Crassostrea gigas and Ostrea edulis). Our study reports that there is no significant difference in concentrations from shell parts corresponding to winter and summer periods for both species. Moreover, interspecific vital effects are reported from specimens from both species and from the same locality. REY profiles and t-distributed Stochastic Neighbour Embedding processing (t-SNE; a discriminant statistical method) indicate that REY measurements from C. gigas shells can be discriminated from one locality to another, but this is not the case for O. edulis, which presents very similar concentrations in all studied localities. Therefore, provenance studies using bivalve shells based on REY have to be first tested for the species, and are not adapted for O. edulis. Other methods have to be investigated to be able to find the provenance of some species such as O. edulis.

2020 ◽  
Vol 17 (8) ◽  
pp. 2205-2217
Author(s):  
Vincent Mouchi ◽  
Camille Godbillot ◽  
Vianney Forest ◽  
Alexey Ulianov ◽  
Franck Lartaud ◽  
...  

Abstract. Rare earth elements (REEs) and yttrium in seawater originate from atmospheric fallout, continental weathering, and transport from rivers, as well as hydrothermal activity. Previous studies have reported the use of REE and Y measurements in biogenic carbonates as a means to reconstruct these surface processes in ancient times. As coastal seawater REE and Y concentrations partially reflect those of nearby rivers, it may be possible to obtain a regional fingerprint of these concentrations from bivalve shells for seafood traceability and environmental monitoring studies. Here, we present a dataset of 297 measurements of REE and Y abundances by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) from two species (Crassostrea gigas and Ostrea edulis). We measured a total of 49 oyster specimens from six locations in France (Atlantic Ocean and Mediterranean Sea). Our study reports that there is no significant difference in concentrations from shell parts corresponding to winter and summer periods for both species. Moreover, interspecific vital effects are reported from specimens from both species and from the same locality. REE and Y profiles as well as t-distributed stochastic neighbour embedding processing (t-SNE; a discriminant statistical method) indicate that REE and Y measurements from C. gigas shells can be discriminated from one locality to another, but this is not the case for O. edulis, which presents very similar concentrations in all studied localities. Therefore, provenance studies using bivalve shells based on REEs and Y have to first be tested for the species. Other methods have to be investigated to be able to find the provenance of some species, such as O. edulis.


2021 ◽  
pp. 1-41
Author(s):  
Lianfu Hai ◽  
Qinghai Xu ◽  
Caixia Mu ◽  
Rui Tao ◽  
Lei Wang ◽  
...  

In the Tanshan area, which is at the Liupanshui Basin, abundant oil shale resources are associated with coals. We analyzed the cores, geochemistry of rare earth elements (REE) and trace element of oil shale with ICP-MS technology to define the palaeo-sedimentary environment, material source and geological significance of oil shale in this area. The results of the summed compositions of REE, and the total REE contents (SREE), in the Yan'an Formation oil shale are slightly higher than the global average of the composition of the upper continental crustal (UCC) and are lower than that of North American shales. The REE distribution pattern is characterized by right-inclined enrichment of light rare earth elements (LREE) and relative loss of heavy rare earth elements (HREE), which reflects the characteristics of crustal source deposition. There is a moderate degree of differentiation among LREE, while the differences among HREE are not obvious. The dEu values show a weak negative anomaly and the dCe values show no anomaly, which are generally consistent with the distribution of REE in the upper crust. The characteristics of REE and trace elements indicate that the oil shale formed in an oxygen-poor reducing environment and that the paleoclimatic conditions were relatively warm and humid. The degree of differentiation of REE indicates that the sedimentation rate in the study area was low, which reflected the characteristics of relatively deep sedimentary water bodies and distant source areas. The results also proved that the source rock mainly consisted of calcareous mudstone, and a small amount of granite was also mixed in.


2018 ◽  
Vol 10 (33) ◽  
pp. 4094-4103 ◽  
Author(s):  
Fernanda Pollo Paniz ◽  
Tatiana Pedron ◽  
Bruna Moreira Freire ◽  
Daiane Placido Torres ◽  
Fábio Ferreira Silva ◽  
...  

There are several international regulations regarding trace elements. The use of ICP-MS for their determination is usually a difficult task, especially when Hg is one of the target elements.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1058
Author(s):  
Stefano Loppi ◽  
Riccardo Fedeli ◽  
Giulia Canali ◽  
Massimo Guarnieri ◽  
Stefano Biagiotti ◽  
...  

In the Valdichiana area (Tuscany, Italy) an ancient native landrace of elephant garlic (Allium ampeloprasum L.), locally known as “Aglione della Valdichiana”, has long been cultivated. The aim of this study was to check whether there are differences in the mineral and nutraceutical profiles of the Aglione della Valdichiana cultivated conventionally and organically. Based on the analysis by ICP-MS of a wide array of major, minor, essential, and non-essential trace elements as well as rare earth elements, and the evaluation of the content of polyphenols, flavonoids, antioxidants, soluble proteins, soluble sugars, and starch, as well as the weight and water content, it was concluded that differences in the mineral and nutraceutical profiles of organically and conventionally grown bulbs were very limited. Only a statistically (p < 0.05) higher concentration of Cd (+2620%), Co (+113%), Mn (+55%), Rb (+180%), and Sb (+180%), as well as glucose (+37%) in conventionally cultivated bulbs emerged. Cadmium was the only element slightly higher than in the “reference plant,” but with a negligible risk (three orders of magnitude lower) for human health based on consumption. It is concluded that we failed to find evidence of healthier food or a higher nutraceutical quality for organically cultivated elephant garlic.


2014 ◽  
Vol 6 (15) ◽  
pp. 6125-6132 ◽  
Author(s):  
Wenjun Li ◽  
Xindi Jin ◽  
Bingyu Gao ◽  
Changle Wang ◽  
Lianchang Zhang

Comparison between the REE data of this work and literature values by Z. S. Yu et al., Sampaio et al., Dulski et al., and Bau et al. in reference materials FER-2 (a) and FER-3 (b) using PAAS-normalized REE patterns.


2018 ◽  
Vol 10 (35) ◽  
pp. 4242-4250 ◽  
Author(s):  
Gabriel G. Arantes de Carvalho ◽  
Denise F. S. Petri ◽  
Pedro V. Oliveira

Calcium alginate microparticles were used for the preconcentration of rare earth elements for ICP-MS analysis of fresh waters.


Sign in / Sign up

Export Citation Format

Share Document