scholarly journals Competing effects of nitrogen deposition and ozone exposure on Northern hemispheric terrestrial carbon uptake and storage, 1850–2099

2020 ◽  
Author(s):  
Martina Franz ◽  
Sönke Zaehle

Abstract. Tropospheric ozone and nitrogen deposition affect vegetation growth and thus the ability of the land biosphere to store carbon. However, the magnitude of this effect on the contemporary and future terrestrial carbon balance is insufficiently understood. Here, we apply an extended version of the O-CN terrestrial biosphere model that simulates the atmosphere to canopy transport of O3, its surface and stomatal uptake, as well as the ozone-induced leaf injury. We use this model to simulate past and future impacts of air pollution (ozone and nitrogen deposition) against a background of concurrent changes in climate and carbon dioxide concentrations (CO2) for two contrasting representative concentration pathways (RCP) scenarios (RCP2.6 and RCP8.5). The simulations show that O3-related damage considerably reduced Northern hemispheric gross primary production (GPP) and long-term carbon storage between 1850 and the 2010s. The ozone effect on GPP in the Northern hemisphere peaks at the end of the 20th century with reductions of 4 %, causing a reduction in the Northern hemispheric carbon sink of 0.4 Pg C yr−1. During the 21st century, ozone-induced reductions in GPP and carbon storage is projected to decline through a combination of air pollution control methods that reduce tropospheric O3 and the indirect effects of rising atmospheric CO2, which reduces stomatal uptake of ozone concurrent with increases of leaf-level water-use efficiency. However, in hotspot regions such as East Asia, the model simulations suggest a sustained decrease of GPP by more than 8 % during the 21st century. Regionally, ozone exposure reduces carbon storage at the end of the 21st century by up to 15 % in parts of Europe, the US and East Asia. These estimates are lower compared to previous studies, which partially results from the explicit representation of non-stomatal ozone destruction, which considerably reduces simulated ozone uptake by leaves and incurred injury. Our simulations suggest that ozone damage largely offsets the growth stimulating effect induced by nitrogen deposition in the Northern hemisphere until the 2050s. Thus, accounting for the stimulating effects of nitrogen deposition but omitting the detrimental effect of O3 might lead to an over estimation of carbon uptake and storage.

2021 ◽  
Vol 18 (10) ◽  
pp. 3219-3241
Author(s):  
Martina Franz ◽  
Sönke Zaehle

Abstract. Tropospheric ozone (O3) and nitrogen deposition affect vegetation growth and, thereby, the ability of the land biosphere to take up and store carbon. However, the magnitude of these effects on the contemporary and future terrestrial carbon balance is insufficiently understood. Here, we apply an extended version of the O–CN terrestrial biosphere model that simulates the atmosphere to canopy transport of O3, its surface and stomatal uptake, the O3-induced leaf injury, and the coupled terrestrial carbon and nitrogen cycles. We use this model to simulate past and future impacts of air pollution against a background of concurrent changes in climate and carbon dioxide concentrations (CO2) for two contrasting representative concentration pathway (RCP) scenarios (RCP2.6 and RCP8.5). The simulations show that O3-related damage considerably reduced northern hemispheric gross primary production (GPP) and long-term carbon storage between 1850 and the 2010s. The simulated O3 effect on GPP in the Northern Hemisphere peaked towards the end of the 20th century, with reductions of 4 %, causing a reduction in the northern hemispheric carbon sink of 0.4 Pg C yr−1. During the 21st century, O3-induced reductions in GPP and carbon storage are projected to decline, through a combination of direct air pollution control methods that reduce near-surface O3 and the indirect effects of rising atmospheric CO2, which reduces stomatal uptake of O3 concurrent with increases of leaf-level water use efficiency. However, in hot spot regions such as East Asia, the model simulations suggest a sustained decrease in GPP by more than 8 % throughout the 21st century. O3 exposure reduces projected carbon storage at the end of the 21st century by up to 15 % in parts of Europe, the US, and East Asia. Our simulations suggest that the stimulating effect of nitrogen deposition on regional GPP and carbon storage is lower in magnitude compared to the detrimental effect of O3 during most of the simulation period for both RCPs. In the second half of the 21st century, the detrimental effect of O3 on GPP is outweighed by nitrogen deposition, but the effect of nitrogen deposition on land carbon storage remains lower than the effect of O3. Accounting for the stimulating effects of nitrogen deposition but omitting the detrimental effect of O3 may lead to an overestimation of projected carbon uptake and storage.


2013 ◽  
Vol 10 (7) ◽  
pp. 11077-11109 ◽  
Author(s):  
G. Bala ◽  
N. Devaraju ◽  
R. K. Chaturvedi ◽  
K. Caldeira ◽  
R. Nemani

Abstract. Global carbon budget studies indicate that the terrestrial ecosystems have remained a~large sink for carbon despite widespread deforestation activities. CO2-fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12–17% of the deposited Nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20:1. We calculate the sensitivity of the terrestrial biosphere for CO2-fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of Nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since preindustrial times terrestrial carbon losses due to warming may have been approximately compensated by effects of increased N deposition, whereas the effect of CO2-fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating climate warming effects on carbon storage may overwhelm N deposition effects in the future.


2013 ◽  
Vol 10 (11) ◽  
pp. 7147-7160 ◽  
Author(s):  
G. Bala ◽  
N. Devaraju ◽  
R. K. Chaturvedi ◽  
K. Caldeira ◽  
R. Nemani

Abstract. Global carbon budget studies indicate that the terrestrial ecosystems have remained a large sink for carbon despite widespread deforestation activities. CO2 fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12–17% of the deposited nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20 : 1. We calculate the sensitivity of the terrestrial biosphere for CO2 fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, the terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since pre-industrial times terrestrial carbon losses due to warming may have been more or less compensated by effects of increased N deposition, whereas the effect of CO2 fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating that climate warming effects on carbon storage may overwhelm N deposition effects in the future.


2014 ◽  
Vol 5 (2) ◽  
pp. 423-439 ◽  
Author(s):  
F. Zhao ◽  
N. Zeng

Abstract. In the Northern Hemisphere, atmospheric CO2 concentration declines in spring and summer, and rises in fall and winter. Ground-based and aircraft-based observation records indicate that the amplitude of this seasonal cycle has increased in the past. Will this trend continue in the future? In this paper, we analyzed simulations for historical (1850–2005) and future (RCP8.5, 2006–2100) periods produced by 10 Earth system models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Our results present a model consensus that the increase of CO2 seasonal amplitude continues throughout the 21st century. Multi-model ensemble relative amplitude of detrended global mean CO2 seasonal cycle increases by 62 ± 19% in 2081–2090, compared to 1961–1970. This amplitude increase corresponds to a 68 ± 25% increase in net biosphere production (NBP). The results show that the increase of NBP amplitude mainly comes from enhanced ecosystem uptake during Northern Hemisphere growing season under future CO2 and temperature conditions. Separate analyses on net primary production (NPP) and respiration reveal that enhanced ecosystem carbon uptake contributes about 75% of the amplitude increase. Stimulated by higher CO2 concentration and high-latitude warming, enhanced NPP likely outcompetes increased respiration at higher temperature, resulting in a higher net uptake during the northern growing season. The zonal distribution and spatial pattern of NBP change suggest that regions north of 45° N dominate the amplitude increase. Models that simulate a stronger carbon uptake also tend to show a larger increase of NBP seasonal amplitude, and the cross-model correlation is significant (R=0.73, p< 0.05).


Author(s):  
Ziwei Xiao ◽  
Xuehui Bai ◽  
Mingzhu Zhao ◽  
Kai Luo ◽  
Hua Zhou ◽  
...  

Abstract Shaded coffee systems can mitigate climate change by fixation of atmospheric carbon dioxide (CO2) in soil. Understanding soil organic carbon (SOC) storage and the factors influencing SOC in coffee plantations are necessary for the development of sound land management practices to prevent land degradation and minimize SOC losses. This study was conducted in the main coffee-growing regions of Yunnan; SOC concentrations and storage of shaded and unshaded coffee systems were assessed in the top 40 cm of soil. Relationships between SOC concentration and factors affecting SOC were analysed using multiple linear regression based on the forward and backward stepwise regression method. Factors analysed were soil bulk density (ρb), soil pH, total nitrogen of soil (N), mean annual temperature (MAT), mean annual moisture (MAM), mean annual precipitation (MAP) and elevations (E). Akaike's information criterion (AIC), coefficient of determination (R2), root mean square error (RMSE) and residual sum of squares (RSS) were used to describe the accuracy of multiple linear regression models. Results showed that mean SOC concentration and storage decreased significantly with depth under unshaded coffee systems. Mean SOC concentration and storage were higher in shaded than unshaded coffee systems at 20–40 cm depth. The correlations between SOC concentration and ρb, pH and N were significant. Evidence from the multiple linear regression model showed that soil bulk density (ρb), soil pH, total nitrogen of soil (N) and climatic variables had the greatest impact on soil carbon storage in the coffee system.


Author(s):  
Sungbo Shim ◽  
Hyunmin Sung ◽  
Sanghoon Kwon ◽  
Jisun Kim ◽  
Jaehee Lee ◽  
...  

This study investigates changes in fine particulate matter (PM2.5) concentration and air-quality index (AQI) in Asia using nine different Coupled Model Inter-Comparison Project 6 (CMIP6) climate model ensembles from historical and future scenarios under shared socioeconomic pathways (SSPs). The results indicated that the estimated present-day PM2.5 concentrations were comparable to satellite-derived data. Overall, the PM2.5 concentrations of the analyzed regions exceeded the WHO air-quality guidelines, particularly in East Asia and South Asia. In future SSP scenarios that consider the implementation of significant air-quality controls (SSP1-2.6, SSP5-8.5) and medium air-quality controls (SSP2-4.5), the annual PM2.5 levels were predicted to substantially reduce (by 46% to around 66% of the present-day levels) in East Asia, resulting in a significant improvement in the AQI values in the mid-future. Conversely, weak air pollution controls considered in the SSP3-7.0 scenario resulted in poor AQI values in China and India. Moreover, a predicted increase in the percentage of aged populations (>65 years) in these regions, coupled with high AQI values, may increase the risk of premature deaths in the future. This study also examined the regional impact of PM2.5 mitigations on downward shortwave energy and surface air temperature. Our results revealed that, although significant air pollution controls can reduce long-term exposure to PM2.5, it may also contribute to the warming of near- and mid-future climates.


Sign in / Sign up

Export Citation Format

Share Document