scholarly journals Facilitating International Cooperation on Air Pollution in East Asia: Fragmentation of the Epistemic Communities

Global Policy ◽  
2018 ◽  
Vol 9 ◽  
pp. 35-41 ◽  
Author(s):  
Masaru Yarime ◽  
Aitong Li
Author(s):  
Sungbo Shim ◽  
Hyunmin Sung ◽  
Sanghoon Kwon ◽  
Jisun Kim ◽  
Jaehee Lee ◽  
...  

This study investigates changes in fine particulate matter (PM2.5) concentration and air-quality index (AQI) in Asia using nine different Coupled Model Inter-Comparison Project 6 (CMIP6) climate model ensembles from historical and future scenarios under shared socioeconomic pathways (SSPs). The results indicated that the estimated present-day PM2.5 concentrations were comparable to satellite-derived data. Overall, the PM2.5 concentrations of the analyzed regions exceeded the WHO air-quality guidelines, particularly in East Asia and South Asia. In future SSP scenarios that consider the implementation of significant air-quality controls (SSP1-2.6, SSP5-8.5) and medium air-quality controls (SSP2-4.5), the annual PM2.5 levels were predicted to substantially reduce (by 46% to around 66% of the present-day levels) in East Asia, resulting in a significant improvement in the AQI values in the mid-future. Conversely, weak air pollution controls considered in the SSP3-7.0 scenario resulted in poor AQI values in China and India. Moreover, a predicted increase in the percentage of aged populations (>65 years) in these regions, coupled with high AQI values, may increase the risk of premature deaths in the future. This study also examined the regional impact of PM2.5 mitigations on downward shortwave energy and surface air temperature. Our results revealed that, although significant air pollution controls can reduce long-term exposure to PM2.5, it may also contribute to the warming of near- and mid-future climates.


2015 ◽  
Vol 1 (2) ◽  
Author(s):  
Blasius Sudarsono

The paper presents the writer's view about the course of International Librarianship that should be offered by library schools in Indonesia. As the course is relatively new to most library schools in Indonesia, the writer tries to propose the syllabus for the course which includes the goals and objectives and how the course should be conducted. Certain emphases are given for the course to be which comprises aspects such as library regional and international cooperation, comparative studies among libraries of particular region like South East Asia in relation to human resources, application of infoimation technology, services and problems encountered by libraries of different countries.


Author(s):  
Akihiro Chiashi ◽  
Soocheol Lee ◽  
Hector Pollitt ◽  
Unnada Chewpreecha ◽  
Pim Vercoulen ◽  
...  
Keyword(s):  

2021 ◽  
Vol 754 ◽  
pp. 142226 ◽  
Author(s):  
Masoud Ghahremanloo ◽  
Yannic Lops ◽  
Yunsoo Choi ◽  
Seyedali Mousavinezhad

2010 ◽  
Vol 10 (9) ◽  
pp. 4221-4239 ◽  
Author(s):  
M. Lin ◽  
T. Holloway ◽  
G. R. Carmichael ◽  
A. M. Fiore

Abstract. Understanding the exchange processes between the atmospheric boundary layer and the free troposphere is crucial for estimating hemispheric transport of air pollution. Most studies of hemispheric air pollution transport have taken a large-scale perspective using global chemical transport models with fairly coarse spatial and temporal resolutions. In support of United Nations Task Force on Hemispheric Transport of Air Pollution (TF HTAP; www.htap.org), this study employs two high-resolution atmospheric chemistry models (WRF-Chem and CMAQ; 36×36 km) driven with chemical boundary conditions from a global model (MOZART; 1.9×1.9°) to examine the role of fine-scale transport and chemistry processes in controlling pollution export and import over the Asian continent in spring (March 2001). Our analysis indicates the importance of rapid venting through deep convection that develops along the leading edge of frontal system convergence bands, which are not adequately resolved in either of two global models compared with TRACE-P aircraft observations during a frontal event. Both regional model simulations and observations show that frontal outflows of CO, O3 and PAN can extend to the upper troposphere (6–9 km). Pollution plumes in the global MOZART model are typically diluted and insufficiently lofted to higher altitudes where they can undergo more efficient transport in stronger winds. We use sensitivity simulations that perturb chemical boundary conditions in the CMAQ regional model to estimate that the O3 production over East Asia (EA) driven by PAN decomposition contributes 20% of the spatial averaged total O3 response to European (EU) emission perturbations in March, and occasionally contributes approximately 50% of the total O3 response in subsiding plumes at mountain observatories (at approximately 2 km altitude). The response to decomposing PAN of EU origin is strongly affected by the O3 formation chemical regimes, which vary with the model chemical mechanism and NOx/VOC emissions. Our high-resolution models demonstrate a large spatial variability (by up to a factor of 6) in the response of local O3 to 20% reductions in EU anthropogenic O3 precursor emissions. The response in the highly populated Asian megacities is 40–50% lower in our high-resolution models than the global model, suggesting that the source-receptor relationships inferred from the global coarse-resolution models likely overestimate health impacts associated with intercontinental O3 transport. Our results highlight the important roles of rapid convective transport, orographic forcing, urban photochemistry and heterogeneous boundary layer processes in controlling intercontinental transport; these processes may not be well resolved in the large-scale models.


2017 ◽  
Vol 17 (6) ◽  
pp. 3823-3843 ◽  
Author(s):  
Syuichi Itahashi ◽  
Itsushi Uno ◽  
Kazuo Osada ◽  
Yusuke Kamiguchi ◽  
Shigekazu Yamamoto ◽  
...  

Abstract. High PM2. 5 concentrations of around 100 µg m−3 were observed twice during an intensive observation campaign in January 2015 at Fukuoka (33.52° N, 130.47° E) in western Japan. These events were analyzed comprehensively with a regional chemical transport model and synergetic ground-based observations with state-of-the-art measurement systems, which can capture the behavior of secondary inorganic aerosols (SO42−, NO3−, and NH4+). The first episode of high PM2. 5 concentration was dominated by NO3− (type N) and the second episode by SO42− (type S). The concentration of NH4+ (the counterion for SO42− and NO3−) was high for both types. A sensitivity simulation in the chemical transport model showed that the dominant contribution was from transboundary air pollution for both types. To investigate the differences between these types further, the chemical transport model results were examined, and a backward trajectory analysis was used to provide additional information. During both types of episodes, high concentrations of NO3− were found above China, and an air mass that originated from northeast China reached Fukuoka. The travel time from the coastline of China to Fukuoka differed between types: it was 18 h for type N and 24 h for type S. The conversion ratio of SO2 to SO42− (Fs) was less than 0.1 for type N, but reached 0.3 for type S as the air mass approached Fukuoka. The higher Fs for type S was related to the higher relative humidity and the concentration of HO2, which produces H2O2, the most effective oxidant for the aqueous-phase production of SO42−. Analyzing the gas ratio as an indicator of the sensitivity of NO3− to changes in SO42− and NH4+ showed that the air mass over China was NH3-rich for type N, but almost NH3-neutral for type S. Thus, although the high concentration of NO3− above China gradually decreased during transport from China to Fukuoka, higher NO3− concentrations were maintained during transport owing to the lower SO42− for type N. In contrast, for type S, the production of SO42− led to the decomposition of NH4NO3, and more SO42− was transported. Notably, the type N transport pattern was limited to western Japan, especially the island of Kyushu. Transboundary air pollution dominated by SO42− (type S) has been recognized as a major pattern of pollution over East Asia. However, our study confirms the importance of transboundary air pollution dominated by NO3−, which will help refine our understanding of transboundary heavy PM2. 5 pollution in winter over East Asia.


2020 ◽  
Author(s):  
Martina Franz ◽  
Sönke Zaehle

Abstract. Tropospheric ozone and nitrogen deposition affect vegetation growth and thus the ability of the land biosphere to store carbon. However, the magnitude of this effect on the contemporary and future terrestrial carbon balance is insufficiently understood. Here, we apply an extended version of the O-CN terrestrial biosphere model that simulates the atmosphere to canopy transport of O3, its surface and stomatal uptake, as well as the ozone-induced leaf injury. We use this model to simulate past and future impacts of air pollution (ozone and nitrogen deposition) against a background of concurrent changes in climate and carbon dioxide concentrations (CO2) for two contrasting representative concentration pathways (RCP) scenarios (RCP2.6 and RCP8.5). The simulations show that O3-related damage considerably reduced Northern hemispheric gross primary production (GPP) and long-term carbon storage between 1850 and the 2010s. The ozone effect on GPP in the Northern hemisphere peaks at the end of the 20th century with reductions of 4 %, causing a reduction in the Northern hemispheric carbon sink of 0.4 Pg C yr−1. During the 21st century, ozone-induced reductions in GPP and carbon storage is projected to decline through a combination of air pollution control methods that reduce tropospheric O3 and the indirect effects of rising atmospheric CO2, which reduces stomatal uptake of ozone concurrent with increases of leaf-level water-use efficiency. However, in hotspot regions such as East Asia, the model simulations suggest a sustained decrease of GPP by more than 8 % during the 21st century. Regionally, ozone exposure reduces carbon storage at the end of the 21st century by up to 15 % in parts of Europe, the US and East Asia. These estimates are lower compared to previous studies, which partially results from the explicit representation of non-stomatal ozone destruction, which considerably reduces simulated ozone uptake by leaves and incurred injury. Our simulations suggest that ozone damage largely offsets the growth stimulating effect induced by nitrogen deposition in the Northern hemisphere until the 2050s. Thus, accounting for the stimulating effects of nitrogen deposition but omitting the detrimental effect of O3 might lead to an over estimation of carbon uptake and storage.


Sign in / Sign up

Export Citation Format

Share Document