scholarly journals Dissolved organic matter signatures in urban surface waters: spatio-temporal patterns and drivers

2022 ◽  
Author(s):  
Clara Romero González-Quijano ◽  
Sonia Herrero Ortega ◽  
Peter Casper ◽  
Mark Gessner ◽  
Gabriel Singer

Abstract. Advances in analytical chemistry have facilitated the characterization of dissolved organic matter (DOM), which has improved understanding of DOM sources and transformations in surface waters. For urban waters, however, where DOM diversity is likely high, the interpretation of DOM signatures is hampered by a lack of basic information. Here we explored the spatiotemporal variation of DOM composition in contrasting urban water bodies, based on spectrophometry and fluorometry, size-exclusion chromatography and ultrahigh-resolution mass spectrometry, to identify linkages between DOM signatures and potential drivers. The highly diverse DOM we observed distinguished lakes and ponds characterized by a high proportion of autochthonous DOM from rivers and streams with more allochthonous DOM. Seasonal variation was apparent in all types of water bodies, driven by the interaction between phenology and urban influences. Specifically, nutrient supply, the percentage of green space adjacent to the water bodies and point source pollution emerged as major urban drivers of DOM composition. Optical DOM properties also revealed the influence of effluents from waste water treatment plants, suggesting their use in water-quality assessment and monitoring. Furthermore, optical measurements inform about processes both within water bodies and in their surroundings, which could improve the assessment of ecosystem functioning and integrity.

Author(s):  
Pieter J. K. Aukes ◽  
Sherry L. Schiff ◽  
Jason J. Venkiteswaran ◽  
Richard J. Elgood ◽  
John Spoelstra

ABSTRACTDissolved Organic Matter (DOM) represents a mixture of organic molecules that vary due to different source materials and degree of processing. Characterizing how DOM composition evolves along the aquatic continuum can be difficult. Using a size-exclusion chromatography technique (LC-OCD), we assessed the variability in DOM composition from both surface and groundwaters across a number of Canadian ecozones (mean annual temperature spanning −10 to +6 C). A wide range in DOM concentration was found from 0.2 to 120 mg C/L. Proportions of different size-based groupings across ecozones were variable, yet similarities between specific water-body types, regardless of location, suggest commonality in the processes dictating DOM composition. A PCA identified 70% of the variation in LC-OCD derived DOM compositions could be explained by the water-body type. We find that DOM composition within a specific water-body type is similar regardless of the differences in climate or surrounding vegetation where the sample originated from.HighlightsSize-exclusion chromatography (using LC-OCD) is a fast and effective tool to quantify differences in DOM composition across different environmentsProportions of biopolymers and low molecular weight fractions can distinguish between surface and groundwater DOMSimilar water-body types have comparable DOM size compositions across ecozones that range in annual air temperatures from –10 to 6ºC


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brice K. Grunert ◽  
Maria Tzortziou ◽  
Patrick Neale ◽  
Alana Menendez ◽  
Peter Hernes

AbstractThe Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.


2015 ◽  
Vol 14 (4) ◽  
pp. vzj2015.01.0005 ◽  
Author(s):  
Roland Bol ◽  
Andreas Lücke ◽  
Wolfgang Tappe ◽  
Sirgit Kummer ◽  
Martina Krause ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document