scholarly journals Effects of multiple environmental factors on CO<sub>2</sub> emission and CH<sub>4</sub> uptake from old-growth forest soils

2010 ◽  
Vol 7 (1) ◽  
pp. 395-407 ◽  
Author(s):  
H. J. Fang ◽  
G. R. Yu ◽  
S. L. Cheng ◽  
T. H. Zhu ◽  
Y. S. Wang ◽  
...  

Abstract. To assess contribution of multiple environmental factors to carbon exchanges between the atmosphere and forest soils, four old-growth forests referred to as boreal coniferous forest, temperate needle-broadleaved mixed forest, subtropical evergreen broadleaved forest and tropical monsoon rain forest were selected along eastern China. In each old-growth forest, soil CO2 and CH4 fluxes were measured from 2003 to 2005 applying the static opaque chamber and gas chromatography technique. Soil temperature and moisture at the 10 cm depth were simultaneously measured with the greenhouse gas measurements. Inorganic N (NH4+-N and NO3−-N) in the 0–10 cm was determined monthly. From north to south, annual mean CO2 emission ranged from 18.09 ± 0.22 to 35.40 ± 2.24 Mg CO2 ha−1 yr−1 and annual mean CH4 uptake ranged from 0.04 ± 0.11 to 5.15 ± 0.96 kg CH4 ha−1 yr−1 in the four old-growth forests. Soil CO2 flux in the old-growth forests was mainly driven by soil temperature, followed by soil moisture and NO3−-N. Temperature sensitivity (Q10) of soil CO2 flux was lower at lower latitudes with high temperature and more precipitation, probably because of less soil organic carbon (SOC). Soil NO3− accumulation caused by environmental change was often accompanied by an increase in soil CO2 emission. In addition, soil CH4 uptake decreased with an increase in soil moisture. The response of soil CH4 flux to temperature was dependent upon the optimal value of soil temperature in each forest. Soil NH4+-N consumption tended to promote soil CH4 uptake in the old-growth forests, whereas soil NO3−-N accumulation was not conducive to CH4 oxidation in anaerobic condition. These results indicate that soil mineral N dynamics largely affects the soil gas fluxes of CO2 and CH4 in the old-growth forests, along with climate conditions.

2009 ◽  
Vol 6 (4) ◽  
pp. 7821-7852
Author(s):  
H. Fang ◽  
G. Yu ◽  
S. Cheng ◽  
S. Li ◽  
Y. Wang ◽  
...  

Abstract. To assess contribution of multiple environmental factors to actual carbon exchanges between the atmosphere and forest soils, four old-growth forests referred to as boreal coniferous forest, temperate needle-broadleaved mixed forest, subtropical evergreen broadleaved forest and tropical seasonal rain forest were selected along the eastern China. In each old-growth forest, soil CO2 and CH4 fluxes were measured for three years using the static chamber and gas chromatography technique. Soil temperature and moisture at the 10 cm depth were measured simultaneously with the greenhouse gas measurements. Inorganic N (NH4+-N and NO3--N) in the 0–10 cm was determined monthly. From north to south, annual mean CO2 flux ranged from 18.09±0.22 to 35.40±2.24 Mg CO2 ha−1 yr−1 and annual mean CH4 flux ranged from -0.04±0.11 to -5.15±0.96 kg CH4 ha−1 yr−1. Soil CO2 fluxes in the old-growth forests were mainly driven by soil temperature, followed by soil moisture and NO3--N. Based on the gradient theory of exchange of time and space, increase in air temperature in the future would promote soil CO2 emission in the old-growth forests. The responses of soil CH4 uptake to warming were dependent upon the critical temperature in forest. In addition, the NO3--N promotion to CO2 emission could partially attribute to the compound effects of high nitrate stimulation on soil microbe activities and increased decomposability of organic materials. The mechanism of NH4+ inhibition to CH4 uptake included both a competitive inhibition of CH4 mono-oxygenase enzyme and a toxic inhibition by hydroxylamine or nitrite produced via NH4+ oxidation. Overall, increasing in precipitation and nitrogen deposition in eastern China would increase soil CO2 emission, but decrease soil CH4 uptake in the old-growth forests.


2009 ◽  
Vol 6 (5) ◽  
pp. 9977-10005 ◽  
Author(s):  
A. Jordan ◽  
G. Jurasinski ◽  
S. Glatzel

Abstract. The large scale spatial heterogeneity of soil respiration caused by differences in site conditions is quite well understood. However, comparably little is known about the micro scale heterogeneity within forest ecosystems on homogeneous soils. Forest age, soil texture, topographic position, micro topography and stand structure may influence soil respiration considerably within short distance. In the present study within site spatial heterogeneity of soil respiration has been evaluated. To do so, an improvement of available techniques for interpolating soil respiration data via kriging was undertaken. Soil respiration was measured with closed chambers biweekly from April 2005 to April 2006 using a nested design (a set of stratified random plots, supplemented by 2 small and 2 large nested groupings) in an unmanaged, beech dominated old growth forest in Central Germany (Hainich, Thuringia). A second exclusive randomized design was established in August 2005 and continually sampled biweekly until July 2007. The average soil respiration values from the random plots were standardized by modeling soil respiration data at defined soil temperature and soil moisture values. By comparing sampling points as well as by comparing kriging results based on various sampling point densities, we found that the exclusion of local outliers was of great importance for the reliability of the estimated fluxes. Most of this information would have been missed without the nested groupings. The extrapolation results slightly improved when additional parameters like soil temperature and soil moisture were included in the extrapolation procedure. Semivariograms solely calculated from soil respiration data show a broad variety of autocorrelation distances (ranges) from a few centimeters up to a few tens of meters. The combination of randomly distributed plots with nested groupings plus the inclusion of additional relevant parameters like soil temperature and soil moisture data permits an improved estimation of the range of soil respiration, which is a prerequisite for reliable interpolated maps of soil respiration.


2021 ◽  
Vol 785 ◽  
pp. 147377
Author(s):  
Yang Gao ◽  
Zhong Zhao ◽  
Yuqing Zhang ◽  
Jiabin Liu

2020 ◽  
Vol 42 ◽  
pp. e20
Author(s):  
Edney Leandro da Vitória ◽  
Carla Da Penha Simon ◽  
Ivoney Gontijo ◽  
Ismael Lourenço de Jesus Freitas ◽  
Paulo Roberto Rocha Junior

Few studies have established protocols for measuring CO2 emissions in the soil. In order to determine the time of day which best represents the average daily CO2 emissions, the present study evaluated the variations in CO2 emissions throughout the day and the relationship between these emissions and the soil moisture and temperature, in an attempt to standardize data collection in tropical soils. The study was carried out in an Atlantic forest fragment of the coastal tablelands, Brazil. A close relationship between CO2 emission and soil temperature was observed, with CO2 emissions decreasing as daytime temperatures increased. The soil moisture had no direct relation with the CO2 emission, but was only related to the soil temperature. Two groups of CO2 emissions were observed, forming between the sampling time from 09:00 a.m. to 10:00 p.m., and from 11:00 p.m. to 08:00 a.m. Due to the small difference found between the mean group formed between 09:00 a.m. and 10:00 p.m., which was ~ 8% when compared to the general average, and also the fact that CO2 is easier to collect during this time, it is suggested that this period is the most suitable time to collect CO2 in the field.


2016 ◽  
Vol 38 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Julie Y. McKnight ◽  
Carol P. Harden ◽  
Sean M. Schaeffer

2014 ◽  
Vol 11 (19) ◽  
pp. 5567-5579 ◽  
Author(s):  
Y. Kim ◽  
K. Nishina ◽  
N. Chae ◽  
S. J. Park ◽  
Y. J. Yoon ◽  
...  

Abstract. The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance regarding thawing permafrost, changes to the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted within dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model – a function of soil temperature, soil moisture, vegetation type, and thaw depth – to quantify the effects of environmental factors on CO2 efflux and to estimate growing season CO2 emissions. Our results showed that average CO2 efflux in 2011 was 1.4 times higher than in 2012, resulting from the distinct difference in soil moisture between the 2 years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, revealing tussock as a significant CO2 source in the Arctic, with a wide area distribution on the circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals that soil temperature regulates the seasonal variation of CO2 efflux and that soil moisture contributes to the interannual variation of CO2 efflux for the two growing seasons in question. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference between CO2 effluxes – 742 and 539 g CO2 m−2 period−1 for 2011 and 2012, respectively, suggesting the 2012 CO2 emission rate was reduced to 27% (95% credible interval: 17–36%) of the 2011 emission, due to higher soil moisture from severe rain. The estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 in 2012 to 1.20 Mg CO2 in 2011 within a 40 m × 40 m plot, corresponding to 86 and 80% of annual CO2 emission rates within the western Alaska tundra ecosystem, estimated from the temperature dependence of CO2 efflux. Therefore, this HB model can be readily applied to observed CO2 efflux, as it demands only four environmental factors and can also be effective for quantitatively assessing the driving parameters of CO2 efflux.


Sign in / Sign up

Export Citation Format

Share Document