scholarly journals Monitoring presence and streaming patterns of Icelandic volcanic ash during its arrival to Slovenia

2011 ◽  
Vol 8 (8) ◽  
pp. 2351-2363 ◽  
Author(s):  
F. Gao ◽  
S. Stanič ◽  
K. Bergant ◽  
T. Bolte ◽  
F. Coren ◽  
...  

Abstract. The eruption of the Eyjafjallajökull volcano starting on 14 April 2010 resulted in the spreading of volcanic ash over most parts of Europe. In Slovenia, the presence of volcanic ash was monitored using ground-based in-situ measurements, lidar-based remote sensing and airborne in-situ measurements. Volcanic origin of the detected aerosols was confirmed by subsequent spectral and chemical analysis of the collected samples. The initial arrival of volcanic ash to Slovenia was first detected through the analysis of precipitation, which occurred on 17 April 2010 at 01:00 UTC and confirmed by satellite-based remote sensing. At this time, the presence of low clouds and occasional precipitation prevented ash monitoring using lidar-based remote sensing. The second arrival of volcanic ash on 20 April 2010 was detected by both lidar-based remote sensing and airborne in-situ measurements, revealing two or more elevated atmospheric aerosol layers. The ash was not seen in satellite images due to lower concentrations. The identification of aerosol samples from ground-based and airborne in-situ measurements based on energy-dispersive X-ray spectroscopy confirmed that a fraction of particles were volcanic ash from the Eyjafjallajökull eruption. To explain the history of the air masses bringing volcanic ash to Slovenia, we analyzed airflow trajectories using ECMWF and HYSPLIT models.

2011 ◽  
Vol 8 (2) ◽  
pp. 3863-3898 ◽  
Author(s):  
F. Gao ◽  
S. Stanič ◽  
K. Bergant ◽  
T. Bolte ◽  
F. Coren ◽  
...  

Abstract. The eruption of the Eyjafjallajökull volcano starting on 14 April 2010 resulted in the spreading of volcanic ash over most parts of Europe. In Slovenia, the presence of volcanic ash was monitored using ground-based in-situ measurements, lidar-based remote sensing and airborne in-situ measurements. Volcanic origin of the detected aerosols was confirmed by subsequent spectral and chemical analysis of the collected samples. The initial arrival of volcanic ash to Slovenia was detected at ground level using in-situ measurements during the night of 17 April 2010, but was not observed via lidar-based remote sensing due to the presence of clouds at lower altitudes while the streaming height of ash-loaded air masses was above 5 km a.s.l. The second arrival of volcanic ash on 20 April 2010 was detected by both lidar-based remote sensing and airborne in-situ measurement, revealing two or more elevated atmospheric aerosol layers above Slovenia. Identification of samples from ground-based in-situ and airborne in-situ measurements based on energy-dispersive X-ray spectroscopy confirmed that a fraction of particles was volcanic ash from the Eyjafjallajökull eruption. We performed simulations of airflow trajectories to explain the arrival of the air masses containing volcanic ash to Slovenia.


2021 ◽  
pp. 105623
Author(s):  
Stefan Becker ◽  
Ramesh Prasad Sapkota ◽  
Binod Pokharel ◽  
Loknath Adhikari ◽  
Rudra Prasad Pokhrel ◽  
...  

2014 ◽  
Vol 7 (9) ◽  
pp. 3095-3112 ◽  
Author(s):  
P. Sawamura ◽  
D. Müller ◽  
R. M. Hoff ◽  
C. A. Hostetler ◽  
R. A. Ferrare ◽  
...  

Abstract. Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore–Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.


2008 ◽  
Vol 91 (3) ◽  
pp. 760-765 ◽  
Author(s):  
Andriy Kovalskiy ◽  
Alfred C. Miller ◽  
Himanshu Jain ◽  
Maria Mitkova

2011 ◽  
Vol 11 (7) ◽  
pp. 3067-3091 ◽  
Author(s):  
C. Córdoba-Jabonero ◽  
M. Sorribas ◽  
J. L. Guerrero-Rascado ◽  
J. A. Adame ◽  
Y. Hernández ◽  
...  

Abstract. The synergetic use of meteorological information, remote sensing both ground-based active (lidar) and passive (sun-photometry) techniques together with backtrajectory analysis and in-situ measurements is devoted to the characterization of dust intrusions. A case study of air masses advected from the Saharan region to the Canary Islands and the Iberian Peninsula, located relatively close and far away from the dust sources, respectively, was considered for this purpose. The observations were performed over three Spanish geographically strategic stations within the dust-influenced area along a common dust plume pathway monitored from 11 to 19 of March 2008. A 4-day long dust event (13–16 March) over the Santa Cruz de Tenerife Observatory (SCO), and a linked short 1-day dust episode (14 March) in the Southern Iberian Peninsula over the Atmospheric Sounding Station "El Arenosillo" (ARN) and the Granada station (GRA) were detected. Meteorological conditions favoured the dust plume transport over the area under study. Backtrajectory analysis clearly revealed the Saharan region as the source of the dust intrusion. Under the Saharan air masses influence, AERONET Aerosol Optical Depth at 500 nm (AOD500) ranged from 0.3 to 0.6 and Ångström Exponent at 440/675 nm wavelength pair (AE440/675) was lower than 0.5, indicating a high loading and predominance of coarse particles during those dusty events. Lidar observations characterized their vertical layering structure, identifying different aerosol contributions depending on altitude. In particular, the 3-km height dust layer transported from the Saharan region and observed over SCO site was later on detected at ARN and GRA stations. No significant differences were found in the lidar (extinction-to-backscatter) ratio (LR) estimation for that dust plume over all stations when a suitable aerosol scenario for lidar data retrieval is selected. Lidar-retrieved LR values of 60–70 sr were obtained during the main dust episodes. These similar LR values found in all the stations suggest that dust properties were kept nearly unchanged in the course of its medium-range transport. In addition, the potential impact on surface of that Saharan dust intrusion over the Iberian Peninsula was evaluated by means of ground-level in-situ measurements for particle deposition assessment together with backtrajectory analysis. However, no connection between those dust plumes and the particle sedimentation registered at ground level is found. Differences on particle deposition processes observed in both Southern Iberian Peninsula sites are due to the particular dust transport pattern occurred over each station. Discrepancies between columnar-integrated and ground-level in-situ measurements show a clear dependence on height of the dust particle size distribution. Then, further vertical size-resolved observations are needed for evaluation of the impact on surface of the Saharan dust arrival to the Iberian Peninsula.


Sign in / Sign up

Export Citation Format

Share Document