scholarly journals High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest

2012 ◽  
Vol 9 (10) ◽  
pp. 3917-3930 ◽  
Author(s):  
C. A. Frieder ◽  
S. H. Nam ◽  
T. R. Martz ◽  
L. A. Levin

Abstract. Predicting consequences of ocean deoxygenation and ocean acidification for nearshore marine ecosystems requires baseline dissolved oxygen (DO) and carbonate chemistry data that are both high-frequency and high-quality. Such data allow accurate assessment of environmental variability and present-day organism exposure regimes. In this study, scales of DO and pH variability were characterized over one year in a nearshore kelp forest ecosystem in the Southern California Bight. DO and pH were strongly, positively correlated, revealing that organisms on this upwelling shelf are not only exposed to low pH but also to low DO. The dominant scale of temporal DO and pH variability occurred on semidiurnal, diurnal and event (days–weeks) time scales. Daily ranges in DO and pH at 7 m water depth (13 mab) could be as large as 220 μmol kg−1 and 0.36 units, respectively. Sources of pH and DO variation include photosynthesis within the kelp forest ecosystem, which can elevate DO and pH by up to 60 μmol kg−1 and 0.1 units over one week following the intrusion of high-density, nutrient-rich water. Accordingly, highly productive macrophyte-based ecosystems could serve as deoxygenation and acidification refugia by acting to elevate DO and pH relative to surrounding waters. DO and pH exhibited greater spatial variation over a 10 m increase in water depth (from 7 to 17 m) than along a 5 km stretch of shelf in a cross-shore or alongshore direction. Over a three-month time period, mean DO and pH at 17 m water depth were 168 μmol kg−1 and 7.87, respectively. These values represent a 35% decrease in mean DO and 37% increase in [H+] relative to near-surface waters. High-frequency variation was also reduced at depth. The mean daily range in DO and pH was 39% and 37% less, respectively, at 17 m water depth relative to 7 m. As a consequence, the exposure history of an organism is largely a function of its depth of occurrence within the kelp forest. With knowledge of local alkalinity conditions and high-frequency temperature, salinity, and pH data, we estimated pCO2 and calcium carbonate saturation states with respect to calcite and aragonite (Ωcalc and Ωarag) for the La Jolla kelp forest at 7 m and 17 m water depth. pCO2 ranged from 246 to 1016 μatm, Ωcalc was always supersaturated, and Ωarag was undersaturated at the beginning of March for five days when pH was less than 7.75 and DO was less than 115 μmol kg−1. These findings raise the possibility that the benthic communities along eastern boundary current systems are currently acclimatized and adapted to natural, variable, and low DO and pH. Still, future exposure of coastal California populations to even lower DO and pH may increase as upwelling intensifies and hypoxic boundaries shoal, compressing habitats and challenging the physiological capacity of intolerant species.

2012 ◽  
Vol 9 (3) ◽  
pp. 4099-4132 ◽  
Author(s):  
C. A. Frieder ◽  
S. H. Nam ◽  
T. R. Martz ◽  
L. A. Levin

Abstract. Predicting consequences of ocean deoxygenation and ocean acidification for nearshore marine ecosystems requires baseline dissolved oxygen (DO) and carbonate chemistry data that are both high-frequency and high-quality. Such data allow accurate assessment of environmental variability and present-day organism exposure regimes. In this study, scales of DO and pH variability were characterized over one year in a nearshore, kelp forest ecosystem in the Southern California Bight. DO and pH were strongly, positively correlated revealing that organisms on this upwelling shelf are not only exposed to low pH but also low DO. The dominant temporal scale of DO and pH variability occurred on semidiurnal, diurnal and event (days–weeks) time scales. Daily ranges in DO and pH at 7 m water depth (13 mab) could be as large as 220 μmol kg−1 and 0.36 units, respectively. This range is much greater than the expected decreases in pH in the open ocean by the year 2100. Sources of pH and DO variation include photosynthesis within the kelp forest ecosystem, which can elevate DO and pH by up to 60 μmol kg−1 and 0.1 units over one week following the intrusion of high-density, nutrient-rich water. Accordingly, highly productive macrophyte-based ecosystems could serve as deoxygenation and acidification refugia by acting to elevate DO and pH relative to surrounding waters. DO and pH exhibited greater spatial variation over a 10 m increase in water depth (from 7 to 17 m) than along a 5-km stretch of shelf in a cross-shore or alongshore direction. Over a three-month time period mean DO and pH at 17-m water depth were 168 μmol kg−1 and 7.87, respectively. These values represent a 35% decrease in mean DO and 37% increase in [H+] relative to surface waters. High-frequency variation was also reduced at depth. The mean daily range in DO and pH was 39% and 37% less, respectively, at 17-m water depth relative to the surface. As a consequence, the exposure history of an organism is largely a function of its depth of occurrence within the kelp forest. These findings raise the possibility that the benthic communities along eastern boundary current systems are currently acclimatized and adapted to natural, variable, and low DO and pH. Future exposure of coastal California populations to low DO and pH may increase as upwelling intensifies and hypoxic boundaries shoal, compressing habitats and challenging the physiological capacity of intolerant species.


Author(s):  
N. I. Mohd Zaki ◽  
G. Najafian

Linear Random Wave Theory (LRWT) is frequently used to simulate water particle kinematics at different nodes of an offshore structure from a reference surface elevation record. However, it is well known that LRWT leads to water particle kinematics with exaggerated high-frequency components in the vicinity of mean water level (MWL). To avoid this problem, empirical techniques (such as Wheeler & vertical stretching methods) are frequently used to provide a more realistic representation of the wave kinematics in the near surface zone. In this paper, a modified version of LRWT, based on the derivation of an effective water depth, is introduced. The proposed technique leads to predicted kinematics (in the near surface zone) which lie between corresponding values from the Wheeler and the vertical stretching methods. Furthermore, it does not suffer from exaggerated high-frequency components in the near surface zone.


Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


2020 ◽  
Author(s):  
Mark B. Green ◽  
Linda H. Pardo ◽  
Scott W. Bailey ◽  
John L. Campbell ◽  
William H. McDowell ◽  
...  

1996 ◽  
Vol 183 (1) ◽  
pp. 323-327 ◽  
Author(s):  
Q L Yang ◽  
E C Gotschlich

The lipooligosaccharide (LOS) expressed by gonococci spontaneously varies its structure at high frequency, but the underlying genetic mechanism has not been described. We have previously reported that the genes encoding the glycosyl transferases responsible for the biosynthesis of the variable alpha chain of the LOS of Neisseria gonorrhoeae are located in a locus containing five genes, lgtA, lgtB, lgtC, lgtD, and lgtE. Sequence analysis showed that lgtA, lgtC, and lgtD contained poly-G tracts within the coding frames, leading to the hypothesis that shifts in the number of guanosine residues in the poly-G tracts might be responsible for the high frequency variation in structure of gonococcal LOS. We now provide experimental evidence confirming this hypothesis.


2013 ◽  
Vol 31 (10) ◽  
pp. 1731-1743 ◽  
Author(s):  
C. M. Huang ◽  
S. D. Zhang ◽  
F. Yi ◽  
K. M. Huang ◽  
Y. H. Zhang ◽  
...  

Abstract. Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when a GW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal–GW interactions are more complicated than usually taken into account by GW parameterizations in global models.


Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1126-1131 ◽  
Author(s):  
Melissa Whitten Bryan ◽  
Kenneth W. Holladay ◽  
Clyde J. Bergeron ◽  
Juliette W. Ioup ◽  
George E. Ioup

An airborne electromagnetic survey was performed over the marsh and estuarine waters of the Barataria basin of Louisiana. Two inversion methods were applied to the measured data to calculate layer thicknesses and conductivities: the modified image method (MIM) and a nonlinear least‐squares method of inversion using two two‐layer forward models and one three‐layer forward model, with results generally in good agreement. Uniform horizontal water layers in the near‐shore Gulf of Mexico with the fresher (less saline, less conductive) water above the saltier (more saline, more conductive) water can be seen clearly. More complex near‐surface layering showing decreasing salinity/conductivity with depth can be seen in the marshes and inland areas. The first‐layer water depth is calculated to be 1–2 m, with the second‐layer water depth around 4 m. The first‐layer marsh and beach depths are computed to be 0–3 m, and the second‐layer marsh and beach depths vary from 2 to 9 m. The first‐layer water conductivity is calculated to be 2–3 S/m, with the second‐layer water conductivity around 3 to 4 S/m and the third‐layer water conductivity 4–5 S/m. The first‐layer marsh conductivity is computed to be mainly 1–2 S/m, and the second‐ and third‐layer marsh conductivities vary from 0.5 to 1.5 S/m, with the conductivities decreasing as depth increases except on the beach, where layer three has a much higher conductivity, ranging up to 3 S/m.


2008 ◽  
Vol 25 (9) ◽  
pp. 1710-1716 ◽  
Author(s):  
Jiayi Pan ◽  
David A. Jay

Abstract The utility of the acoustic Doppler current profiler (ADCP) for sampling small time and space scales of coastal environments can be enhanced by mounting a high-frequency (1200 kHz) ADCP on an oscillating towed body. This approach requires both an external reference to convert the measured shears to velocities in the earth coordinates and a method to determine the towed body velocities. During the River Influence on the Shelf Ecosystems (RISE) project cruise, a high-frequency (1200 kHz) and narrowbeam ADCP with mode 12 sampling was mounted on a TRIAXUS oscillating towfish, which steers a 3D path behind the ship. This deployment approach extended the vertical range of the ADCP and allowed it to sample near-surface waters outside the ship’s wake. The measurements from a ship-mounted 1200-kHz narrowbeam ADCP are used as references for TRIAXUS ADCP data, and a method of overlapping bins is employed to recover the entire vertical range of the TRIAXUS ADCP. The TRIAXUS vehicle horizontal velocities are obtained by removing the derived ocean current velocity from the TRIAXUS ADCP measurements. The results show that the method is practical.


Sign in / Sign up

Export Citation Format

Share Document