scholarly journals Constraint of soil moisture on CO<sub>2</sub> efflux from tundra lichen, moss, and tussock in Council, Alaska using a hierarchical Bayesian model

2014 ◽  
Vol 11 (4) ◽  
pp. 5903-5939
Author(s):  
Y. Kim ◽  
K. Nishina ◽  
N. Chae ◽  
S. Park ◽  
Y. Yoon ◽  
...  

Abstract. The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance in response to thawing permafrost, changes in the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted in dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of the driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model – which is a function of soil temperature, soil moisture, vegetation type and thaw depth – to quantify the effect of environmental parameters on CO2 efflux, and to estimate growing season CO2 emission. Our results showed that average CO2 efflux in 2011 is 1.4-fold higher than in 2012, resulting from the distinct difference in soil moisture between the two years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, reflecting tussock as a significant CO2 source in the Arctic, with wide area distribution on a circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals soil temperature as the most important parameter in regulating CO2 efflux, rather than soil moisture and thaw depth. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference in CO2 efflux – 742 and 539 g CO2 m−2 period−1 in 2011 and 2012, respectively, suggesting that the 2012 CO2 emission rate was constrained by 27% (95% credible interval: 17–36%) compared to 2011, due to higher soil moisture from severe rain. Estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 period−1 in 2012 to 1.2 Mg CO2 period−1 in 2011 within a 40 m × 40 m plot, corresponding to 86% and 80% of the annual CO2 emission rates within the Alaska western tundra ecosystem. Therefore, the HB model can be readily applied to observed CO2 efflux, as it demands only four environmental parameters and can also be effective for quantitatively assessing the driving parameters of CO2 efflux.

2014 ◽  
Vol 11 (19) ◽  
pp. 5567-5579 ◽  
Author(s):  
Y. Kim ◽  
K. Nishina ◽  
N. Chae ◽  
S. J. Park ◽  
Y. J. Yoon ◽  
...  

Abstract. The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance regarding thawing permafrost, changes to the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted within dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model – a function of soil temperature, soil moisture, vegetation type, and thaw depth – to quantify the effects of environmental factors on CO2 efflux and to estimate growing season CO2 emissions. Our results showed that average CO2 efflux in 2011 was 1.4 times higher than in 2012, resulting from the distinct difference in soil moisture between the 2 years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, revealing tussock as a significant CO2 source in the Arctic, with a wide area distribution on the circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals that soil temperature regulates the seasonal variation of CO2 efflux and that soil moisture contributes to the interannual variation of CO2 efflux for the two growing seasons in question. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference between CO2 effluxes – 742 and 539 g CO2 m−2 period−1 for 2011 and 2012, respectively, suggesting the 2012 CO2 emission rate was reduced to 27% (95% credible interval: 17–36%) of the 2011 emission, due to higher soil moisture from severe rain. The estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 in 2012 to 1.20 Mg CO2 in 2011 within a 40 m × 40 m plot, corresponding to 86 and 80% of annual CO2 emission rates within the western Alaska tundra ecosystem, estimated from the temperature dependence of CO2 efflux. Therefore, this HB model can be readily applied to observed CO2 efflux, as it demands only four environmental factors and can also be effective for quantitatively assessing the driving parameters of CO2 efflux.


2020 ◽  
Vol 1 (2) ◽  
pp. 171-179

Soil respiration is a major component of global carbon cycle. Therefore, it is crucial to understand the environmental controls on soil respiration for evaluating potential response of ecosystems to climate change. In a temperate deciduous forest (located in Northern-Hungary) we added or removed aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture, and soil temperature. Soil CO2 efflux was measured at each plot using soda-lime method. Temperature sensitivity of soil respiration (Q10) was monitored via measuring soil temperature on an hourly basis, while soil moisture was determined monthly. Soil respiration increased in control plots from the second year after implementing the treatment, but results showed fluctuations from one year to another. The effect of doubled litter was less significant than the effect of removal. Removed litter and root inputs caused substantial decrease in soil respiration. We found that temperature was more influential in the control of soil respiration than soil moisture. In plots with no litter Q10 varied in the largest interval. For treatment with doubled litter layer, temperature sensitivity of CO2 efflux did not change considerably. The effect of increasing soil temperature is more conspicuous to soil respiration in litter removal treatments since lack of litter causes greater irradiation. When exclusively leaf litter was considered, the effect of temperature on soil respiration was lower in treatments with added litter than with removed litter. Our results reveal that soil life is impacted by the absence of organic matter, rather than by an excess of organic matter. Results of CO2 emission from soils with different organic matter content can contribute to sustainable land use, considering the changed climatic factors caused by global climate change.


2019 ◽  
Author(s):  
Ramona J. Heim ◽  
Anna Bucharova ◽  
Leya Brodt ◽  
Johannes Kamp ◽  
Daniel Rieker ◽  
...  

AbstractWildfires are relatively rare in subarctic tundra ecosystems, but they can strongly change ecosystem properties. Short-term fire effects on subarctic tundra vegetation are well documented, but long-term vegetation recovery has been studied less. The frequency of tundra fires will increase with climate warming. Understanding the long-term effects of fire is necessary to predict future ecosystem changes.We used a space-for-time approach to assess vegetation recovery after fire over more than four decades. We studied soil and vegetation patterns on three large fire scars (>44, 28 and 12 years old) in dry, lichen-dominated forest tundra in Western Siberia. On 60 plots, we determined soil temperature and permafrost thaw depth, sampled vegetation and measured plant functional traits. We assessed trends in NDVI to support the field-based results on vegetation recovery.Soil temperature, permafrost thaw depth and total vegetation cover had recovered to pre-fire levels after >44 years, as well as total vegetation cover. In contrast, after >44 years, functional groups had not recovered to the pre-fire state. Burnt areas had lower lichen and higher bryophyte and shrub cover. The dominating shrub species, Betula nana, exhibited a higher vitality (higher specific leaf area and plant height) on burnt compared with control plots, suggesting a fire legacy effect in shrub growth. Our results confirm patterns of shrub encroachment after fire that were detected before in other parts of the Arctic and Subarctic. In the so far poorly studied Western Siberian forest tundra we demonstrate for the first time, long-term fire-legacies on the functional composition of relatively dry shrub- and lichen-dominated vegetation.


2021 ◽  
Author(s):  
Lena Hermesdorf ◽  
Ludovica D'Imperio ◽  
Bo Elberling ◽  
Per Lennart Ambus

&lt;p&gt;Wildfire frequency in the Arctic has increased in recent years and is projected to increase further with changes in climatic conditions due to warmer and drier summers. Yet, there is a lack of knowledge about the impacts such events may have on the net greenhouse gas (GHG) balances in ecosystems. During three consecutive growing seasons, we investigated the immediate and short-term effects of experimental fire on carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;), methane (CH&lt;sub&gt;4&lt;/sub&gt;), and nitrous oxide (N&lt;sub&gt;2&lt;/sub&gt;O) surface fluxes in a well-drained tundra ecosystem in West Greenland. During the fire, we monitored litter and surface temperature, as well as the soil temperature in the top 0-5 cm. The results showed that surface temperatures exceeded 400 &amp;#176;C during the burning process and combusted all aboveground biomass, which significantly affected the ecosystem carbon (C) balance. Burned plots continued to be a net CO&lt;sub&gt;2&lt;/sub&gt; source for at least two years after burning. Meanwhile, soil temperature did not exceed 60 &amp;#176;C during the fire, and soil GHG cycling appeared relatively resistant to these conditions. Burning had an effect on soil properties and CH&lt;sub&gt;4&lt;/sub&gt; fluxes only immediately after the fire event and it had no significant effect on ecosystem respiration (ER). Instead net CH&lt;sub&gt;4&lt;/sub&gt; uptake and ER correlated (p&lt;0.05) with soil moisture and soil temperature, respectively. No significant fire effects were observed in net N&lt;sub&gt;2&lt;/sub&gt;O fluxes which suggests that processes linked to the nitrogen (N) cycle are driven by factors that were not affected by this moderate fire event. &amp;#160;&amp;#160;&lt;/p&gt;


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 727 ◽  
Author(s):  
XiaoGuo Wang ◽  
Bo Zhu ◽  
MeiRong Gao ◽  
YanQiang Wang ◽  
XunHua Zheng

CO2 emissions from soils were measured under 3 land-use types at the adjacent plots of forest plantation, grassland, and cropland from January 2005 to December 2006. Mean soil CO2 efflux rates measured during the 2-year study varied from 59 to 527 mg CO2/m2.h in forest plantation, 37 to 498 mg CO2/m2.h in grassland, and 32 to 397 mg CO2/m2.h in cropland. Soil respiration in the 3 types of land-use showed a similar seasonal pattern in variation during both years, in which the single-peaked curve occurred in early summer and the minimum in winter. In particular, the date of maximum soil CO2 efflux rate in cropland occurred about 30 days earlier than in forest and grassland in both 2005 and 2006. The relationship of soil respiration rate (R) with soil temperature (T ) and soil moisture (W ) fitted well to the equation R = β0eβ1TW β2 (a, b, c were constants) than other univariate models which consider soil water content or soil temperature alone. Soil temperature and soil moisture together explained 69–92% of the temporal variation in soil respiration in the 3 land-use types. Temperature sensitivity of soil respiration (Q10) was affected positively by soil moisture of top 0.1 m layer and negatively by soil temperature at 0.05 m depth. The relationship between Q10 values and soil temperature (T ) or soil moisture (W ) indicated that a 1°C increase in soil temperature at 0.05 m depth will reduce the Q10 value by 0.07, 0.05, and 0.06 in forest, grassland, and cropland, respectively. Similarly, a 1% decrease in soil moisture of the top 0.1 m layer will reduce the Q10 value by 0.10, 0.09, and 0.11 in forest, grassland, and cropland.


2010 ◽  
Vol 7 (11) ◽  
pp. 3447-3457 ◽  
Author(s):  
N. Liang ◽  
T. Hirano ◽  
Z.-M. Zheng ◽  
J. Tang ◽  
Y. Fujinuma

Abstract. We had continuously measured soil CO2 efflux (Rs) in a larch forest in northern Japan at hourly intervals for the snow-free period in 2003 with an automated chamber system and partitioned Rs into heterotrophic respiration (Rh) and autotrophic respiration (Rr) by using the trench method. In addition, we applied the soil CO2 concentration gradients method to continuously measure soil CO2 profiles under snowpack in the snowy period and to partition Rs into topsoil (Oa and A horizons) CO2 efflux (Ft) with a depth of 0.13 m and sub-soil (C horizon) CO2 efflux (Fc). We found that soil CO2 effluxes were strongly affected by the seasonal variation of soil temperature but weakly correlated with soil moisture, probably because the volumetric soil moisture (30–40% at 95% confidence interval) was within a plateau region for root and microbial activities. The soil CO2 effluxes changed seasonally in parallel with soil temperature in topsoil with the peak in late summer. On the other hand, the contribution of Rr to Rs was the largest at about 50% in early summer, when canopy photosynthesis and plant growth were more active. The temperature sensitivity (Q10) of Rr peaked in June. Under snowpack, Rs was stable until mid-March and then gradually increased with snow melting. Rs summed up to 79 gC m−2 during the snowy season for 4 months. The annual Rs was determined at 934 gC m−2 y−1 in 2003, which accounted for 63% of ecosystem respiration. The annual contributions of Rh and Rs to Rs were 57% and 43%, respectively. Based on the gradient approach, Rs was partitioned vertically into litter (Oi and Oe horizons) with a depth of 0.01–0.02 m, topsoil and sub-soil respirations with proportions of 6, 72 and 22%, respectively, on an annual basis. The vertical distribution of CO2 efflux was consistent with those of soil carbon and root biomass.


2015 ◽  
Vol 12 (10) ◽  
pp. 2975-2994 ◽  
Author(s):  
J. W. Atkins ◽  
H. E. Epstein ◽  
D. L. Welsch

Abstract. In topographically complex watersheds, landscape position and vegetation heterogeneity can alter the soil water regime through both lateral and vertical redistribution, respectively. These alterations of soil moisture may have significant impacts on the spatial heterogeneity of biogeochemical cycles throughout the watershed. To evaluate how landscape position and vegetation heterogeneity affect soil CO2 efflux (FSOIL), we conducted observations across the Weimer Run watershed (373 ha), located near Davis, West Virginia, for three growing seasons with varying precipitation. An apparent soil temperature threshold of 11 °C for FSOIL at 12 cm depth was observed in our data, where FSOIL rates greatly increase in variance above this threshold. We therefore focus our analyses of FSOIL on instances in which soil temperature values were above this threshold. Vegetation had the greatest effect on FSOIL rates, with plots beneath shrubs at all elevations, for all years, showing the greatest mean rates of FSOIL (6.07 μmol CO2 m−2 s−1) compared to plots beneath closed-forest canopy (4.69 μmol CO2 m−2 s−1) and plots located in open, forest gap (4.09 μmol CO2 m−2 s−1) plots. During periods of high soil moisture, we find that CO2 efflux rates are constrained, and that maximum efflux rates occur during periods of average to below-average soil water availability. While vegetation was the variable most related to FSOIL, there is also strong interannual variability in fluxes determined by the interaction of annual precipitation and topography. These findings add to the current theoretical constructs related to the interactions of moisture and vegetation in biogeochemical cycles within topographically complex watersheds.


Sign in / Sign up

Export Citation Format

Share Document