scholarly journals Evaluating the Community Land Model in a pine stand with <sup>13</sup>CO<sub>2</sub> labeling and shading manipulations

2015 ◽  
Vol 12 (9) ◽  
pp. 6971-7015 ◽  
Author(s):  
J. Mao ◽  
D. M. Ricciuto ◽  
P. E. Thornton ◽  
J. M. Warren ◽  
A. W. King ◽  
...  

Abstract. Carbon allocation and flow through ecosystems regulate land surface–atmosphere CO2 exchange and thus is a key, albeit uncertain, component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked carbon allocation through a young Pinus taeda stand following pulse-labeling with 13CO2 and two levels of shading. The field component of this project provided process-oriented data that was used to evaluate and improve terrestrial biosphere model simulations of rapid shifts in carbon allocation and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturing short-term carbon and water dynamics in relation to manipulative shading treatments, and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. For CLM4 to closely simulate pretreatment conditions, we calibrated select model parameters with pretreatment observational data. Compared to CLM4 simulations with default parameters, CLM4 with calibrated model parameters was able to better simulate pretreatment vegetation carbon pools, light response curves, and other initial states and fluxes of carbon and water. Over a 3 week treatment period, the calibrated CLM4 generally reproduced the impacts of shading on average soil moisture at 15–95 cm depth, transpiration, relative change in stem carbon, and soil CO2 efflux rate, although some discrepancies in the estimation of magnitudes and temporal evolutions existed. CLM4, however, was not able to track the progression of the 13CO2 label from the atmosphere through foliage, phloem, roots or surface soil CO2 efflux, even when optimized model parameters were used. This model bias arises, in part, from the lack of a short-term non-structural carbohydrate storage pool and progressive timing of within-plant transport, thus indicating a need for future work to improve the allocation routines in CLM4. Overall, these types of detailed evaluations of CLM4, paired with intensive field manipulations, can help to identify model strengths and weaknesses, model uncertainties, and additional observations necessary for future model development.

2016 ◽  
Vol 13 (3) ◽  
pp. 641-657 ◽  
Author(s):  
J. Mao ◽  
D. M. Ricciuto ◽  
P. E. Thornton ◽  
J. M. Warren ◽  
A. W. King ◽  
...  

Abstract. Carbon allocation and flow through ecosystems regulates land surface–atmosphere CO2 exchange and thus is a key, albeit uncertain, component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment–model project tracked carbon allocation through a young Pinus taeda stand following pulse labeling with 13CO2 and two levels of shading. The field component of this project provided process-oriented data that were used to evaluate terrestrial biosphere model simulations of rapid shifts in carbon allocation and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturing short-term carbon and water dynamics in relation to manipulative shading treatments and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. When calibrated with pretreatment observations, CLM4 was capable of closely simulating stand-level biomass, transpiration, leaf-level photosynthesis, and pre-labeling 13C values. Over the 3-week treatment period, CLM4 generally reproduced the impacts of shading on soil moisture changes, relative change in stem carbon, and soil CO2 efflux rate. Transpiration under moderate shading was also simulated well by the model, but even with optimization we were not able to simulate the high levels of transpiration observed in the heavy shading treatment, suggesting that the Ball–Berry conductance model is inadequate for these conditions. The calibrated version of CLM4 gave reasonable estimates of label concentration in phloem and in soil surface CO2 after 3 weeks of shade treatment, but it lacks the mechanisms needed to track the labeling pulse through plant tissues on shorter timescales. We developed a conceptual model for photosynthate transport based on the experimental observations, and we discussed conditions under which the hypothesized mechanisms could have an important influence on model behavior in larger-scale applications. Implications for future experimental studies are described, some of which are already being implemented in follow-on studies.


2011 ◽  
Vol 8 (5) ◽  
pp. 1153-1168 ◽  
Author(s):  
D. Epron ◽  
J. Ngao ◽  
M. Dannoura ◽  
M. R. Bakker ◽  
B. Zeller ◽  
...  

Abstract. Soil CO2 efflux is the main source of CO2 from forest ecosystems and it is tightly coupled to the transfer of recent photosynthetic assimilates belowground and their metabolism in roots, mycorrhiza and rhizosphere microorganisms feeding on root-derived exudates. The objective of our study was to assess patterns of belowground carbon allocation among tree species and along seasons. Pure 13CO2 pulse labelling of the entire crown of three different tree species (beech, oak and pine) was carried out at distinct phenological stages. Excess 13C in soil CO2 efflux was tracked using tuneable diode laser absorption spectrometry to determine time lags between the start of the labelling and the appearance of 13C in soil CO2 efflux and the amount of 13C allocated to soil CO2 efflux. Isotope composition (δ13C) of CO2 respired by fine roots and soil microbes was measured at several occasions after labelling, together with δ13C of bulk root tissue and microbial carbon. Time lags ranged from 0.5 to 1.3 days in beech and oak and were longer in pine (1.6–2.7 days during the active growing season, more than 4 days during the resting season), and the transfer of C to the microbial biomass was as fast as to the fine roots. The amount of 13C allocated to soil CO2 efflux was estimated from a compartment model. It varied between 1 and 21 % of the amount of 13CO2 taken up by the crown, depending on the species and the season. While rainfall exclusion that moderately decreased soil water content did not affect the pattern of carbon allocation to soil CO2 efflux in beech, seasonal patterns of carbon allocation belowground differed markedly between species, with pronounced seasonal variations in pine and beech. In beech, it may reflect competition with the strength of other sinks (aboveground growth in late spring and storage in late summer) that were not observed in oak. We report a fast transfer of recent photosynthates to the mycorhizosphere and we conclude that the patterns of carbon allocation belowground are species specific and change seasonally according to the phenology of the species.


2013 ◽  
Vol 10 (7) ◽  
pp. 11671-11704 ◽  
Author(s):  
S. Burri ◽  
P. Sturm ◽  
U. E. Prechsl ◽  
A. Knohl ◽  
N. Buchmann

Abstract. Along with predicted climate change, increased risks for summer drought are projected for Central Europe. However, large knowledge gaps exist in terms of how drought events influence the short-term ecosystem carbon cycle. Here, we present results from 13CO2 pulse labeling experiments at an intensively managed lowland grassland in Switzerland. We investigated the effect of extreme summer drought on the short-term coupling of freshly assimilated photosynthates in shoots to roots as well as to soil CO2 efflux. Summer drought was simulated using rainout shelters during two field seasons (2010 and 2011). Soil CO2 efflux and its isotopic composition were measured with custom-built chambers coupled to a quantum cascade laser spectrometer (QCLAS-ISO, Aerodyne Research Inc., MA, USA). During the 90 min pulse labeling experiments, we added 99.9 atom % 13CO2 to the grass sward. In addition to the isotopic analysis of soil CO2 efflux, this label was traced over 31 days into bulk shoots, roots and soil. Drought reduced the incorporation of recently fixed carbon into shoots and increased carbon allocation below-ground relative to total tracer uptake. Contrary to our hypothesis, we did not find a change in allocation speed in response to drought, although drought clearly reduced soil CO2 efflux rates. 19 days after pulse labeling, only about 60% of total tracer uptake was lost via soil CO2 efflux under drought compared to about 75% under control conditions. Predisposition of grassland by spring drought lead to different responses to summer drought in 2011 compared to 2010, suggesting increased sensitivity of grassland to consecutive drought events as predicted under future climate change.


2011 ◽  
Vol 8 (1) ◽  
pp. 885-919 ◽  
Author(s):  
D. Epron ◽  
J. Ngao ◽  
M. Dannoura ◽  
M. R. Bakker ◽  
B. Zeller ◽  
...  

Abstract. Soil CO2 efflux is the main source of CO2 from forest ecosystems and it is tightly coupled to the transfer of recent photosynthetic assimilates belowground and their metabolism in roots, mycorrhiza and rhizosphere microorganisms feeding on root-derived exudates. The objectives of our study were to assess patterns of belowground carbon allocation among tree species and along seasons. Pure 13CO2 pulse labelling of the entire crown of three different tree species (beech, oak and pine) was carried out at distinct phenological stages. Excess 13C in soil CO2 efflux was tracked using tunable diode laser absorption spectrometry to determine time lags between the start of the labelling and the appearance of 13C in soil CO2 efflux and the amount of 13C allocated to soil CO2 efflux. Isotope composition (δ13C) of CO2 respired by fine roots and soil microbes was measured at several occasions after labelling, together with δ13C of bulk root tissue and microbial carbon. Time lags ranged from 0.5 to 1.3 days in beech and oak and were longer in pine (1.6–2.7 days during the active growing season, more than 4 days during the resting season), and the transfer of C to the microbial biomass was as fast as to the fine roots. The amount of 13C allocated to soil CO2 efflux was estimated from a compartment model. Seasonal patterns of carbon allocation to soil CO2 efflux differed markedly between species, with pronounced seasonal variations in pine and beech. In beech, it may reflect competition with other sinks (aboveground growth in late spring and storage in late summer) that were not observed in oak.


2014 ◽  
Vol 11 (4) ◽  
pp. 961-975 ◽  
Author(s):  
S. Burri ◽  
P. Sturm ◽  
U. E. Prechsl ◽  
A. Knohl ◽  
N. Buchmann

Abstract. Along with predicted climate change, increased risks for summer drought are projected for Central Europe. However, large knowledge gaps exist in terms of how drought events influence the short-term ecosystem carbon cycle. Here, we present results from 13CO2 pulse labeling experiments at an intensively managed lowland grassland in Switzerland. We investigated the effect of extreme summer drought on the short-term coupling of freshly assimilated photosynthates in shoots to roots as well as to soil CO2 efflux. Summer drought was simulated using rainout shelters during two field seasons (2010 and 2011). Soil CO2 efflux and its isotopic composition were measured with custom-built chambers coupled to a quantum cascade laser spectrometer (QCLAS-ISO, Aerodyne Research Inc., MA, USA). During the 90 min pulse labeling experiments, we added 99.9 atom % 13CO2 to the grass sward. In addition to the isotopic analysis of soil CO2 efflux, this label was traced over 31 days into bulk shoots, roots and soil. Drought reduced the incorporation of recently fixed carbon into the shoots, but increased the relative allocation of fresh assimilates below ground compared to the control grasslands. Contrary to our hypothesis, we did not find a change of allocation speed in response to drought. Although drought clearly reduced soil CO2 efflux rates, about 75% of total tracer uptake in control plots was lost via soil CO2 efflux during 19 days after pulse labeling, compared to only about 60% under drought conditions. Thus, the short-term coupling of above- and below-ground processes was reduced in response to summer drought. The occurrence of a natural spring drought in 2011 lead to comparable albeit weaker drought responses increasing the confidence in the generalizability of our findings.


Sign in / Sign up

Export Citation Format

Share Document