scholarly journals Nitrogen oxides emission from two beech forests subjected to different nitrogen loads

2005 ◽  
Vol 2 (5) ◽  
pp. 1381-1422 ◽  
Author(s):  
B. Kitzler ◽  
S. Zechmeister-Boltenstern ◽  
C. Holtermann ◽  
U. Skiba ◽  
K. Butterbach-Bahl

Abstract. We analysed nitrogen oxides (N2O, NO and NO2) and carbon dioxide (CO2) emissions from two beech forest soils close to Vienna, Austria, which were exposed to different nitrogen input from the atmosphere. The site Schottenwald (SW) received 22.6 kg N y-1 and Klausenleopoldsdorf (KL) 13.5 kg N y-1 through wet and dry deposition. Nitrogen oxide emissions from soil were measured hourly with an automatic dynamic chamber system. Daily N2O measurements were carried out by an automatic gas sampling system. Measurements of nitrous oxide (N2O) and CO2 emissions were conducted over larger areas on a biweekly (SW) or monthly (KL) basis by manually operated chambers. We used an autoregression procedure (time-series analysis) for establishing time-lagged relationships between N-oxide emissions and different climate, soil chemistry and N-deposition data. It was found that changes in soil moisture and soil temperature significantly effected CO2 and N-oxide emissions with a time lag of up to two weeks and could explain up to 95% of the temporal variations of gas emissions. Event emissions after rain or during freezing and thawing cycles contributed significantly (for NO 50%) to overall N-oxides emissions. In the two-year period of analysis the annual gaseous N2O losses at SW ranged from 0.65 to 0.77 kg N ha-1 y-1 and NO losses were 0.18 to 0.67 kg N ha-1 per vegetation period. In KL significantly lower annual N2O emissions (0.52 kg N2O-N kg ha-1 y-1) as well as considerably lower NO-losses were observed. During a three-month measurement campaign NO losses at KL were 0.02 kg, whereas in the same time period significantly more NO was emitted in SW (0.32 kg NO-N ha-1). Higher N-oxide emissions, especially NO emissions from the high N-input site (SW) indicate that atmospheric deposition had a strong impact on losses of gaseous N from our forest soils. At KL there was a strong correlation between N-deposition and N-emission over time, which shows that low N-input sites are especially responsive to increasing N-inputs.

2006 ◽  
Vol 3 (3) ◽  
pp. 293-310 ◽  
Author(s):  
B. Kitzler ◽  
S. Zechmeister-Boltenstern ◽  
C. Holtermann ◽  
U. Skiba ◽  
K. Butterbach-Bahl

Abstract. We analysed nitrogen oxides (N2O, NO) and carbon dioxide (CO2) emissions from two beech forest soils close to Vienna, Austria, which were exposed to different nitrogen input from the atmosphere. The site Schottenwald (SW) received 20.2 kg N ha−1 y−1 and Klausenleopoldsdorf (KL) 12.6 kg N ha−1 y−1 through wet deposition. Nitric oxide emissions from soil were measured hourly with an automatic dynamic chamber system. Daily N2O measurements were carried out by an automatic gas sampling system. Measurements of nitrous oxide (N2O) and CO2 emissions were conducted over larger areas on a biweekly (SW) or monthly (KL) basis by manually operated chambers. We used an autoregression procedure (time-series analysis) for establishing time-lagged relationships between N-oxides emissions and different climate, soil chemistry and N-deposition data. It was found that changes in soil moisture and soil temperature significantly effected CO2 and N-oxides emissions with a time lag of up to two weeks and could explain up to 95% of the temporal variations of gas emissions. Event emissions after rain or during freezing and thawing cycles contributed significantly (for NO 50%) to overall N-oxides emissions. In the two-year period of analysis the annual gaseous N2O emissions at SW ranged from 0.64 to 0.79 kg N ha−1 y−1 and NO emissions were 0.24 to 0.49 kg N ha−1 per vegetation period. In KL significantly lower annual N2O emissions (0.52 to 0.65 kg N2O-N kg ha−1 y−1) as well as considerably lower NO-emissions were observed. During a three-month measurement campaign NO emissions at KL were 0.02 kg N ha−1), whereas in the same time period significantly more NO was emitted in SW (0.32 kg NO-N ha−1). Higher N-oxides emissions, especially NO emissions from the high N-input site (SW) may indicate that atmospheric deposition has an impact on emissions of gaseous N from our forest soils. At KL there was a strong correlation between N-deposition and N-emission over time, which shows that low N-input sites are especially responsive to increasing N-inputs.


2005 ◽  
Vol 2 (5) ◽  
pp. 1423-1455 ◽  
Author(s):  
B. Kitzler ◽  
S. Zechmeister-Boltenstern ◽  
C. Holtermann ◽  
U. Skiba ◽  
K. Butterbach-Bahl

Abstract. We measured nitrogen oxides (N2O and NOx), dinitrogen (N2) and carbon dioxide (CO2) emissions from a spruce-fir-beech forest soil in the North Tyrolean limestone Alps in Austria. The site received 12.1 kg nitrogen via wet and dry deposition. Fluxes of nitric oxide (NO) were measured by an automatic dynamic chamber system on an hourly basis over a two year period. Daily N2O emissions were obtained by a semi-automatic gas measuring system. In order to cover spatial variability biweekly manual measurements of N2O and CO2 emissions were carried out, additionally. For acquiring information on the effects of soil and meteorological conditions and of N-deposition on N-emissions we chose the autoregression procedure (time-series analysis) as our means of investigation. Hence, we could exclude the data's autocorrelation in the course of the time. We found that soil temperature, soil moisture and wet N-deposition followed by air temperature and precipitation were the most powerful influencing parameters effecting N-emissions. With these variables up to 89% of observed temporal variations of N-emissions could be explained. During the two-year investigation period between 2.5 and 3.5% of deposited N was reemitted in form of N2O whereas only 0.2% were emitted as NO. At our mountain forest site the main end-product of microbial activity processes was N2 and trace gases (N2O and NO) were only of minor importance.


2006 ◽  
Vol 3 (4) ◽  
pp. 383-395 ◽  
Author(s):  
B. Kitzler ◽  
S. Zechmeister-Boltenstern ◽  
C. Holtermann ◽  
U. Skiba ◽  
K. Butterbach-Bahl

Abstract. We measured nitrogen oxides (N2O and NOx), dinitrogen (N2) and carbon dioxide (CO2) emissions from a spruce-fir-beech forest soil in the North Tyrolean limestone Alps in Austria. The site received 10.6–11.9 kg N ha−1 y−1 nitrogen as bulk deposition. Fluxes of nitric oxide (NO) were measured by an automatic dynamic chamber system on an hourly basis over a two year period. Daily N2O emissions were obtained by a semi-automatic gas measuring system. In order to cover spatial variability biweekly manual measurements of N2O and CO2 emissions were carried out in addition. For acquiring information on the effects of soil and meteorological conditions and of N-deposition on N-emissions we chose the auto-regression procedure (time-series analysis) as our means of investigation. Hence, we could exclude the data's autocorrelation in the course of the time. We found that soil temperature, soil moisture and bulk N-deposition followed by air temperature and precipitation were the most powerful influencing parameters effecting N-emissions. With these variables, up to 89% of observed temporal variations of N-emissions could be explained. During the two-year investigation period between 2.5 and 3.5% of deposited N was reemitted in form of N2O whereas only 0.2% were emitted as NO. At our mountain forest site the main end-product of microbial activity processes was N2 and trace gases (N2O and NO) were only of minor importance.


2021 ◽  
Vol 304-305 ◽  
pp. 108434
Author(s):  
Yujie Shi ◽  
Junfeng Wang ◽  
Ya'nan Li ◽  
Jinwei Zhang ◽  
Yunna Ao ◽  
...  
Keyword(s):  

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Quan Li ◽  
Changhui Peng ◽  
Junbo Zhang ◽  
Yongfu Li ◽  
Xinzhang Song

AbstractForest soils play an important role in controlling global warming by reducing atmospheric methane (CH4) concentrations. However, little attention has been paid to how nitrogen (N) deposition may alter microorganism communities that are related to the CH4 cycle or CH4 oxidation in subtropical forest soils. We investigated the effects of N addition (0, 30, 60, or 90 kg N ha−1 yr−1) on soil CH4 flux and methanotroph and methanogen abundance, diversity, and community structure in a Moso bamboo (Phyllostachys edulis) forest in subtropical China. N addition significantly increased methanogen abundance but reduced both methanotroph and methanogen diversity. Methanotroph and methanogen community structures under the N deposition treatments were significantly different from those of the control. In N deposition treatments, the relative abundance of Methanoculleus was significantly lower than that in the control. Soil pH was the key factor regulating the changes in methanotroph and methanogen diversity and community structure. The CH4 emission rate increased with N addition and was negatively correlated with both methanotroph and methanogen diversity but positively correlated with methanogen abundance. Overall, our results suggested that N deposition can suppress CH4 uptake by altering methanotroph and methanogen abundance, diversity, and community structure in subtropical Moso bamboo forest soils.


2009 ◽  
Vol 6 (3) ◽  
pp. 4803-4828 ◽  
Author(s):  
M. Lund ◽  
T. R. Christensen ◽  
M. Mastepanov ◽  
A. Lindroth ◽  
L. Ström

Abstract. Peatlands are important ecosystems in the context of biospheric feedback to climate change, due to the large storage of organic C in peatland soils. Nitrogen deposition and increased nutrient availability in soils following climate warming may cause changes in these ecosystems affecting greenhouse gas exchange. We have conducted an N and P fertilization experiment in two Swedish bogs subjected to high and low background N deposition, and measured the exchange of CO2, CH4 and N2O using the closed chamber technique. During the second year of fertilization, both gross primary production and ecosystem respiration were significantly increased by N addition in the northernmost site where background N deposition is low, while gross primary production was stimulated by P addition in the southern high N deposition site. In addition, a short-term response in respiration was seen following fertilization, probably associated with rapid growth of nutrient-limited soil microorganisms. No treatment effect was seen on the CH4 exchange, while N2O emissions peaks were detected in N fertilized plots indicating the importance of taking N2O into consideration under increased N availability. In a longer term, increased nutrient availability will cause changes in plant competitive patterns. The related effect on the future net greenhouse gas exchange is likely dependent on the mixture of nutrients being made available and which plant functional types that benefit from it, in combination with other changes related to global warming.


1998 ◽  
Vol 2 (4) ◽  
pp. 431-437
Author(s):  
A. Tietema ◽  
B. A. Emmett ◽  
B. J. Cosby

Abstract. The MERLIN model was applied on the results of a field-scale manipulation experiment with decreased nitrogen (N) deposition in an N saturated forest ecosystem in the Netherlands. The aim was to investigate the mechanisms that could explain the observed rapid response of nitrate as a result of the decreased N input. Calibrating the model to pre-treatment data revealed that, despite the high atmospheric N input, the trees relied on N mineralised from refractory organic matter (ROM) for their growth. MERLIN could simulate only the fast response of nitrate leaching after decreased input if this ROM mineralisation rate was decreased strongly at the time of the manipulation experiment.


2006 ◽  
Vol 38 (12) ◽  
pp. 3411-3420 ◽  
Author(s):  
Pål Tore Mørkved ◽  
Peter Dörsch ◽  
Trond Maukon Henriksen ◽  
Lars Reier Bakken

Sign in / Sign up

Export Citation Format

Share Document