scholarly journals Sensitivity of the marine carbonate cycle to atmospheric CO<sub>2</sub>

2010 ◽  
Vol 7 (5) ◽  
pp. 7029-7090
Author(s):  
R. Gangstø ◽  
F. Joos ◽  
M. Gehlen

Abstract. Ocean acidification might reduce the ability of calcifying plankton to produce and maintain their shells of calcite, or of aragonite, the more soluble form of CaCO3. In addition to possibly large biological impacts, reduced CaCO3 production corresponds to a negative feedback on atmospheric CO2. In order to explore the sensitivity of the ocean carbon cycle to increasing concentrations of atmospheric CO2, we use the new biogeochemical Bern3D/PISCES model. The model reproduces the large scale distributions of biogeochemical tracers. With a range of sensitivity studies, we explore the effect of (i) using different parameterizations of CaCO3 production fitted to available laboratory and field experiments, of (ii) letting calcite and aragonite be produced by auto- and heterotrophic plankton groups, and of (iii) using carbon emissions from the range of the most recent IPCC Representative Concentration Pathways (RCP). Under a high-emission scenario, the CaCO3 production of all the model versions decreases from ~1 Pg C yr−1 to between 0.36 and 0.82 Pg C yr−1 by the year 2100. By the year 2500, the ratio of open water CaCO3 dissolution to production stabilizes at a value that is 30–50% higher than at pre-industrial times when carbon emissions are set to zero after 2100. Despite the wide range of parameterizations, model versions and scenarios included in our study, the changes in CaCO3 production and dissolution resulting from ocean acidification provide only a small feedback on atmospheric CO2 of 1–11 ppm by the year 2100.

2011 ◽  
Vol 8 (2) ◽  
pp. 433-458 ◽  
Author(s):  
R. Gangstø ◽  
F. Joos ◽  
M. Gehlen

Abstract. Ocean acidification might reduce the ability of calcifying plankton to produce and maintain their shells of calcite, or of aragonite, the more soluble form of CaCO3. In addition to possibly large biological impacts, reduced CaCO3 production corresponds to a negative feedback on atmospheric CO2. In order to explore the sensitivity of the ocean carbon cycle to increasing concentrations of atmospheric CO2, we use the new biogeochemical Bern3D/PISCES model. The model reproduces the large scale distributions of biogeochemical tracers. With a range of sensitivity studies, we explore the effect of (i) using different parameterizations of CaCO3 production fitted to available laboratory and field experiments, of (ii) letting calcite and aragonite be produced by auto- and heterotrophic plankton groups, and of (iii) using carbon emissions from the range of the most recent IPCC Representative Concentration Pathways (RCP). Under a high-emission scenario, the CaCO3 production of all the model versions decreases from ~1 Pg C yr−1 to between 0.36 and 0.82 Pg C yr−1 by the year 2100. The changes in CaCO3 production and dissolution resulting from ocean acidification provide only a small feedback on atmospheric CO2 of −1 to −11 ppm by the year 2100, despite the wide range of parameterizations, model versions and scenarios included in our study. A potential upper limit of the CO2-calcification/dissolution feedback of −30 ppm by the year 2100 is computed by setting calcification to zero after 2000 in a high 21st century emission scenario. The similarity of feedback estimates yielded by the model version with calcite produced by nanophytoplankton and the one with calcite, respectively aragonite produced by mesozooplankton suggests that expending biogeochemical models to calcifying zooplankton might not be needed to simulate biogeochemical impacts on the marine carbonate cycle. The changes in saturation state confirm previous studies indicating that future anthropogenic CO2 emissions may lead to irreversible changes in ΩA for several centuries. Furthermore, due to the long-term changes in the deep ocean, the ratio of open water CaCO3 dissolution to production stabilizes by the year 2500 at a value that is 30–50% higher than at pre-industrial times when carbon emissions are set to zero after 2100.


2018 ◽  
Vol 14 (8) ◽  
pp. 1229-1252 ◽  
Author(s):  
Carlye D. Peterson ◽  
Lorraine E. Lisiecki

Abstract. We present a compilation of 127 time series δ13C records from Cibicides wuellerstorfi spanning the last deglaciation (20–6 ka) which is well-suited for reconstructing large-scale carbon cycle changes, especially for comparison with isotope-enabled carbon cycle models. The age models for the δ13C records are derived from regional planktic radiocarbon compilations (Stern and Lisiecki, 2014). The δ13C records were stacked in nine different regions and then combined using volume-weighted averages to create intermediate, deep, and global δ13C stacks. These benthic δ13C stacks are used to reconstruct changes in the size of the terrestrial biosphere and deep ocean carbon storage. The timing of change in global mean δ13C is interpreted to indicate terrestrial biosphere expansion from 19–6 ka. The δ13C gradient between the intermediate and deep ocean, which we interpret as a proxy for deep ocean carbon storage, matches the pattern of atmospheric CO2 change observed in ice core records. The presence of signals associated with the terrestrial biosphere and atmospheric CO2 indicates that the compiled δ13C records have sufficient spatial coverage and time resolution to accurately reconstruct large-scale carbon cycle changes during the glacial termination.


2011 ◽  
Vol 33 (3) ◽  
pp. 30-34
Author(s):  
Rod W. Wilson ◽  
Erin E. Reardon ◽  
Christopher T. Perry

Human activities, such as burning fossil fuels, are playing an important role in the rising levels of carbon dioxide (CO2) in the Earth's atmosphere1. The oceans may store a large portion of CO2 that we are releasing into the atmosphere, with up to 40% already taken up by the oceans. Although this absorption helps to offset some of the greenhouse effect of atmospheric CO2, it also contributes to ocean acidification, or a fall in the pH of sea water. The historical global mean pH of oceanic sea water is about 8.2, and this has already declined by 0.1 pH units (a 30% increase in H+ concentration) and is predicted to reach pH ~7.7 by the end of the century if current rates of fossil fuel use continue, leading to an atmospheric CO2 level of 800 p.p.m.1,2. Even this extreme potential fall in pH would still leave seawater above the neutral point (pH 7.0), so technically it is more accurate to say that the ocean is becoming less alkaline, rather than truly acidic (i.e. below pH 7.0). However, the magnitude is perhaps less important than the speed of pH change which is occurring faster than at any time during the previous 20 million years. Over this time, the average ocean pH has probably never fallen below pH 8.02,3. It is only during the last decade that the importance of ocean acidification has come to the forefront of concerns for scientists1,2. Consequences of these changes in global CO2 production are predicted to include elevated global temperatures, rising sea levels, more unpredictable and extreme weather patterns, and shifts in ecosystems1. In order to more fully understand the implications of ocean acidification, teams of researchers, including fisheries scientists, physiologists, geologists, oceanographers, chemists and climate modellers, are working to refine current understanding of the ocean carbon cycle.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 210 ◽  
Author(s):  
Tana Wood ◽  
Grizelle González ◽  
Whendee Silver ◽  
Sasha Reed ◽  
Molly Cavaleri

There is a long history of experimental research in the Luquillo Experimental Forest in Puerto Rico. These experiments have addressed questions about biotic thresholds, assessed why communities vary along natural gradients, and have explored forest responses to a range of both anthropogenic and non-anthropogenic disturbances. Combined, these studies cover many of the major disturbances that affect tropical forests around the world and span a wide range of topics, including the effects of forest thinning, ionizing radiation, hurricane disturbance, nitrogen deposition, drought, and global warming. These invaluable studies have greatly enhanced our understanding of tropical forest function under different disturbance regimes and informed the development of management strategies. Here we summarize the major field experiments that have occurred within the Luquillo Experimental Forest. Taken together, results from the major experiments conducted in the Luquillo Experimental Forest demonstrate a high resilience of Puerto Rico’s tropical forests to a variety of stressors.


2011 ◽  
Vol 366 (1582) ◽  
pp. 3292-3302 ◽  
Author(s):  
Robert M. Ewers ◽  
Raphael K. Didham ◽  
Lenore Fahrig ◽  
Gonçalo Ferraz ◽  
Andy Hector ◽  
...  

Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.


2021 ◽  
Author(s):  
Yulei Zhu ◽  
Gang Sun ◽  
Guohui Ding ◽  
Jie Zhou ◽  
Mingxing Wen ◽  
...  

Plant phenomics is widely recognised as a key area to bridge the gap between traits of agricultural importance and genomic information. A wide range of field-based phenotyping solutions have been developed. Nevertheless, disadvantages of these current systems have been identified concerning mobility, affordability, accuracy, scalability, and the ability to analyse big data collected. Here, we present a novel solution that combines a commercial backpack LiDAR device and graphical user interface (GUI) based software called CropQuant-3D, which has been applied to analyse 3D morphological traits in wheat. To our knowledge, this is the first use of backpack LiDAR in field-based plant research, acquiring millions of 3D points to represent spatial features of crops. A key part of the innovation is the GUI-based software that can extract plot-based traits from large and complex point clouds with limited computing time. We describe how we developed and used the combined system to quantify canopy structural changes, impossible to measure previously. Also, we demonstrate the biological relevance of our work through a case study that examined wheat varieties to three different levels of nitrogen fertilisation in field experiments. The results indicate that the solution can differentiate significant genotype and treatment effects on key traits, with strong correlations with manual measurements. Hence, we believe that the solution presented here could consistently and speedily quantify traits at a larger scale, indicating the system could be used as a reliable research tool in large-scale and multi-location field phenotyping to contribute to the resolution of the phenotyping bottleneck.


2012 ◽  
Vol 9 (11) ◽  
pp. 15541-15565 ◽  
Author(s):  
R. G. J. Bellerby ◽  
A. Silyakova ◽  
G. Nondal ◽  
D. Slagstad ◽  
J. Czerny ◽  
...  

Abstract. A major, potential stressor of marine systems is the changing water chemistry following increasing seawater carbon dioxide concentration (CO2), commonly termed ocean acidification. In order to understand how an Arctic pelagic ecosystem may respond to future CO2, a deliberate ocean acidification and nutrient perturbation study was undertaken in an Arctic fjord. The initial setting and evolution of seawater carbonate chemistry were investigated. Additions of carbon dioxide resulted in a wide range of ocean acidification scenarios. This study documents the changes to the CO2 system throughout the study following net biological consumption and gas exchange with the atmosphere. In light of the common practice of extrapolating results to cover regions away from experimental conditions, a modelling study was also performed to assess the representativeness, in the context of the simulated present and future carbonate system, of the experimental study region to both the near and wider Arctic region. The mesocosm experiment represented the range of simulated marine carbonate system for the coming century and beyond (pCO2 to 1420 μatm) and thus extrapolations may be appropriate to ecosystems exhibiting similar levels of CO2 system drivers. However, as the regional ocean acidification was very heterogenous and did not follow changes in atmospheric CO2, care should be taken in extrapolating the mesocosm response to other regions based on atmospheric CO2 scenarios.


2017 ◽  
Vol 284 (1856) ◽  
pp. 20170904 ◽  
Author(s):  
Lena Grinsted ◽  
Jeremy Field

A major aim in evolutionary biology is to understand altruistic help and reproductive partitioning in cooperative societies, where subordinate helpers forego reproduction to rear dominant breeders' offspring. Traditional models of cooperation in these societies typically make a key assumption: that the only alternative to staying and helping is solitary breeding, an often unfeasible task. Using large-scale field experiments on paper wasps ( Polistes dominula ), we show that individuals have high-quality alternative nesting options available that offer fitness payoffs just as high as their actual chosen options, far exceeding payoffs from solitary breeding. Furthermore, joiners could not easily be replaced if they were removed experimentally, suggesting that it may be costly for dominants to reject them. Our results have implications for expected payoff distributions for cooperating individuals, and suggest that biological market theory, which incorporates partner choice and competition for partners, is necessary to understand helping behaviour in societies like that of P. dominula . Traditional models are likely to overestimate the incentive to stay and help, and therefore the amount of help provided, and may underestimate the size of reproductive concession required to retain subordinates. These findings are relevant for a wide range of cooperative breeders where there is dispersal between social groups.


2018 ◽  
Author(s):  
Carlye Peterson ◽  
Lorraine Lisiecki

Abstract. We present a compilation of 117 time series δ13C records from Cibicides wuellerstorfi spanning the last deglaciation (20–6 kyr) and well-suited for reconstructing large-scale carbon cycle changes, especially for comparison with isotope-enabled carbon cycle models. The age models for the δ13C records are derived from regional planktic radiocarbon compilations (Stern and Lisiecki, 2014). The δ13C records were stacked in nine different regions and then combined using volume-weighted averages to create intermediate, deep, and global δ13C stacks. These benthic δ13C stacks are used to reconstruct mean changes in the size of the terrestrial biosphere and deep ocean carbon storage. The timing of change in global mean δ13C is interpreted to indicate terrestrial biosphere expansion from 19–6 ka. The δ13C gradient between the intermediate and deep ocean, which we interpret as a proxy for deep ocean carbon storage, matches the pattern of atmospheric CO2 change observed in ice core records. The presence of signals associated with the terrestrial biosphere and atmospheric CO2 indicates that the compiled δ13C records have sufficient spatial coverage and time resolution to accurately reconstruct large-scale carbon cycle changes during the glacial termination.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Sign in / Sign up

Export Citation Format

Share Document