scholarly journals Deglacial carbon cycle changes observed in a compilation of 117 benthic δ<sup>13</sup>C time series (20–6 ka)

2018 ◽  
Author(s):  
Carlye Peterson ◽  
Lorraine Lisiecki

Abstract. We present a compilation of 117 time series δ13C records from Cibicides wuellerstorfi spanning the last deglaciation (20–6 kyr) and well-suited for reconstructing large-scale carbon cycle changes, especially for comparison with isotope-enabled carbon cycle models. The age models for the δ13C records are derived from regional planktic radiocarbon compilations (Stern and Lisiecki, 2014). The δ13C records were stacked in nine different regions and then combined using volume-weighted averages to create intermediate, deep, and global δ13C stacks. These benthic δ13C stacks are used to reconstruct mean changes in the size of the terrestrial biosphere and deep ocean carbon storage. The timing of change in global mean δ13C is interpreted to indicate terrestrial biosphere expansion from 19–6 ka. The δ13C gradient between the intermediate and deep ocean, which we interpret as a proxy for deep ocean carbon storage, matches the pattern of atmospheric CO2 change observed in ice core records. The presence of signals associated with the terrestrial biosphere and atmospheric CO2 indicates that the compiled δ13C records have sufficient spatial coverage and time resolution to accurately reconstruct large-scale carbon cycle changes during the glacial termination.

2018 ◽  
Vol 14 (8) ◽  
pp. 1229-1252 ◽  
Author(s):  
Carlye D. Peterson ◽  
Lorraine E. Lisiecki

Abstract. We present a compilation of 127 time series δ13C records from Cibicides wuellerstorfi spanning the last deglaciation (20–6 ka) which is well-suited for reconstructing large-scale carbon cycle changes, especially for comparison with isotope-enabled carbon cycle models. The age models for the δ13C records are derived from regional planktic radiocarbon compilations (Stern and Lisiecki, 2014). The δ13C records were stacked in nine different regions and then combined using volume-weighted averages to create intermediate, deep, and global δ13C stacks. These benthic δ13C stacks are used to reconstruct changes in the size of the terrestrial biosphere and deep ocean carbon storage. The timing of change in global mean δ13C is interpreted to indicate terrestrial biosphere expansion from 19–6 ka. The δ13C gradient between the intermediate and deep ocean, which we interpret as a proxy for deep ocean carbon storage, matches the pattern of atmospheric CO2 change observed in ice core records. The presence of signals associated with the terrestrial biosphere and atmospheric CO2 indicates that the compiled δ13C records have sufficient spatial coverage and time resolution to accurately reconstruct large-scale carbon cycle changes during the glacial termination.


2016 ◽  
Vol 7 (4) ◽  
pp. 797-812 ◽  
Author(s):  
Fabian Reith ◽  
David P. Keller ◽  
Andreas Oschlies

Abstract. In this study we look beyond the previously studied effects of oceanic CO2 injections on atmospheric and oceanic reservoirs and also account for carbon cycle and climate feedbacks between the atmosphere and the terrestrial biosphere. Considering these additional feedbacks is important since backfluxes from the terrestrial biosphere to the atmosphere in response to reducing atmospheric CO2 can further offset the targeted reduction. To quantify these dynamics we use an Earth system model of intermediate complexity to simulate direct injection of CO2 into the deep ocean as a means of emissions mitigation during a high CO2 emission scenario. In three sets of experiments with different injection depths, we simulate a 100-year injection period of a total of 70 GtC and follow global carbon cycle dynamics over another 900 years. In additional parameter perturbation runs, we varied the default terrestrial photosynthesis CO2 fertilization parameterization by ±50 % in order to test the sensitivity of this uncertain carbon cycle feedback to the targeted atmospheric carbon reduction through direct CO2 injections. Simulated seawater chemistry changes and marine carbon storage effectiveness are similar to previous studies. As expected, by the end of the injection period avoided emissions fall short of the targeted 70 GtC by 16–30 % as a result of carbon cycle feedbacks and backfluxes in both land and ocean reservoirs. The target emissions reduction in the parameter perturbation simulations is about 0.2 and 2 % more at the end of the injection period and about 9 % less to 1 % more at the end of the simulations when compared to the unperturbed injection runs. An unexpected feature is the effect of the model's internal variability of deep-water formation in the Southern Ocean, which, in some model runs, causes additional oceanic carbon uptake after injection termination relative to a control run without injection and therefore with slightly different atmospheric CO2 and climate. These results of a model that has very low internal climate variability illustrate that the attribution of carbon fluxes and accounting for injected CO2 may be very challenging in the real climate system with its much larger internal variability.


2021 ◽  
Author(s):  
Pierre Friedlingstein

&lt;p&gt;Human activities have an unprecedented impact on the global carbon cycle. &amp;#160;Atmospheric CO2 concentrations have been continuously monitored since 1958, and show a 30% increase, from 315 ppm in 1958 to 412 ppm in 2020. Anthropogenic emissions, primarily from fossil fuel combustion, but also from land-use changes, are the drivers of these changes, with global emissions almost tripling over that period, from 4GtC per year in 1958 to almost 12 GtC per year at present. Although fossil fuel emission declined by about 7% in 2020 due to response to the COVID-19 pandemic, there are no long-term sign of global emissions declining yet, despite climate policies being put in places in many countries.&lt;/p&gt;&lt;p&gt;The atmospheric CO2 increase induces land and ocean carbon uptake, respectively driven by enhanced photosynthesis, leading to larger land biomass and soil carbon; and by enhanced air-sea CO2 exchange, leading to larger carbon content in the surface ocean and export to the deep ocean. These mechanisms are negative feedbacks in the Earth system and are removing about 50% of the CO2 emitted in the atmosphere. Without these land and ocean carbon sinks, current atmospheric CO2 would already be around 600 ppm.&lt;/p&gt;&lt;p&gt;However, modelling studies show that climate change reduces land and ocean carbon sinks, hence amplifying the warming. Although there is agreement that such positive feedback will develop over the course of the century, there are not yet clear evidence of a major climate driven reduction of the carbon sinks.&amp;#160; So far, observations and modelling studies of the historical carbon cycle do not show any sign of a tipping point in the global carbon cycle.&lt;/p&gt;


2016 ◽  
Author(s):  
Fabian Reith ◽  
David P. Keller ◽  
Andreas Oschlies

Abstract. In this study we look beyond the previously studied effects of oceanic CO2 injections on atmospheric and oceanic reservoirs, and also account for carbon cycle and climate feedbacks between the atmosphere and the terrestrial biosphere. Considering these additional feedbacks is important since backfluxes from the terrestrial biosphere to the atmosphere in response to reducing atmospheric CO2 can further offset the targeted reduction. To quantify these dynamics we use an Earth-system model of intermediate complexity to simulate direct injection of CO2 into the deep ocean as a means of emissions mitigation during a high CO2 emission scenario. In three sets of experiments with different injection depths, we simulate a 100-year injection period of a total of 70 GtC and follow global carbon cycle dynamics over another 900 years. Simulated seawater chemistry changes and marine carbon storage effectiveness are similar to previous studies. As expected, by the end of the injection period avoided emissions fall short of the targeted 70 GtC by 16 % to 30 % as a result of carbon cycle feedbacks and backfluxes in both land and ocean reservoirs. An unexpected feature are effects of the model's internal variability of deep-water formation in the Southern Ocean, which, in some model runs, causes additional oceanic carbon uptake after injection termination relative to a control run without injection and therefore with slightly different atmospheric CO2 and climate. These results of a model that has very low internal climate variability illustrate that attribution of carbon fluxes and accounting for injected CO2 may be very challenging in the real climate system with its much larger internal variability.


2016 ◽  
Author(s):  
G. J. Schürmann ◽  
T. Kaminski ◽  
C. Köstler ◽  
N. Carvalhais ◽  
M. Voßbeck ◽  
...  

Abstract. We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS) built around the tangent-linear version of the land surface scheme of the MPI-Earth System Model v1 (JSBACH). The simulated terrestrial biosphere processes (phenology and carbon balance) were constrained by observations of the fraction of photosynthetically active radiation (TIP-FAPAR product) and by observations of atmospheric CO2 at a global set of monitoring stations for the years 2005–2009. The system successfully, and computationally efficiently, improved average foliar area and northern extra-tropical seasonality of foliar area when constrained by TIP-FAPAR. Global net and gross carbon fluxes were improved when constrained by atmospheric CO2, although the system tended to underestimate tropical productivity. Assimilating both data streams jointly allowed the MPI-CCDAS to match both observations (TIP-FAPAR and atmospheric CO2) equally well as the single data stream assimilation cases, therefore overall increasing the appropriateness of the resultant parameter values and biosphere dynamics. Our study thus highlights the role of the TIP-FAPAR product in stabilising the underdetermined atmospheric inversion problem and demonstrates the value of multiple-data stream assimilation for the simulation of terrestrial biosphere dynamics. The constraint on regional gross and net CO2 flux patterns is limited through the parametrisation of the biosphere model. We expect improvement on that aspect through a refined initialisation strategy and inclusion of further biosphere observations as constraints.


2011 ◽  
Vol 33 (3) ◽  
pp. 30-34
Author(s):  
Rod W. Wilson ◽  
Erin E. Reardon ◽  
Christopher T. Perry

Human activities, such as burning fossil fuels, are playing an important role in the rising levels of carbon dioxide (CO2) in the Earth's atmosphere1. The oceans may store a large portion of CO2 that we are releasing into the atmosphere, with up to 40% already taken up by the oceans. Although this absorption helps to offset some of the greenhouse effect of atmospheric CO2, it also contributes to ocean acidification, or a fall in the pH of sea water. The historical global mean pH of oceanic sea water is about 8.2, and this has already declined by 0.1 pH units (a 30% increase in H+ concentration) and is predicted to reach pH ~7.7 by the end of the century if current rates of fossil fuel use continue, leading to an atmospheric CO2 level of 800 p.p.m.1,2. Even this extreme potential fall in pH would still leave seawater above the neutral point (pH 7.0), so technically it is more accurate to say that the ocean is becoming less alkaline, rather than truly acidic (i.e. below pH 7.0). However, the magnitude is perhaps less important than the speed of pH change which is occurring faster than at any time during the previous 20 million years. Over this time, the average ocean pH has probably never fallen below pH 8.02,3. It is only during the last decade that the importance of ocean acidification has come to the forefront of concerns for scientists1,2. Consequences of these changes in global CO2 production are predicted to include elevated global temperatures, rising sea levels, more unpredictable and extreme weather patterns, and shifts in ecosystems1. In order to more fully understand the implications of ocean acidification, teams of researchers, including fisheries scientists, physiologists, geologists, oceanographers, chemists and climate modellers, are working to refine current understanding of the ocean carbon cycle.


2006 ◽  
Vol 2 (5) ◽  
pp. 711-743 ◽  
Author(s):  
L. C. Skinner

Abstract. Given the magnitude and dynamism of the deep marine carbon reservoir, it is almost certain that past glacial – interglacial fluctuations in atmospheric CO2 have relied at least in part on changes in the carbon storage capacity of the deep sea. To date, physical ocean circulation mechanisms that have been proposed as viable explanations for glacial – interglacial CO2 change have focussed almost exclusively on dynamical or kinetic processes. Here, a simple mechanism is proposed for increasing the carbon storage capacity of the deep sea that operates via changes in the volume of southern-sourced deep-water filling the ocean basins, as dictated by the hypsometry of the ocean floor. It is proposed that a water-mass that occupies more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. Hence by filling this interval with southern-sourced deep-water (enriched in dissolved CO2 due to its particular mode of formation) the amount of carbon sequestered in the deep sea may be greatly increased. A simple box-model is used to test this hypothesis, and to investigate its implications. It is suggested that up to 70% of the observed glacial – interglacial CO2 change might be explained by the replacement of northern-sourced deep-water below 2.5 km water depth by its southern counterpart. Most importantly, it is found that an increase in the volume of southern-sourced deep-water allows glacial CO2 levels to be simulated easily with only modest changes in Southern Ocean biological export or overturning. If incorporated into the list of contributing factors to marine carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacial – interglacial CO2 change.


2016 ◽  
Vol 12 (1) ◽  
pp. 51-73 ◽  
Author(s):  
B. A. A. Hoogakker ◽  
R. S. Smith ◽  
J. S. Singarayer ◽  
R. Marchant ◽  
I. C. Prentice ◽  
...  

Abstract. A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C.


2021 ◽  
Author(s):  
Ben Bronselaer ◽  
Laure Zanna

&lt;p&gt;As the climate warms due to greenhouse gas emissions, the ocean absorbs excess heat and carbon. The patterns of ocean excess heat and carbon storage appear tightly linked when the large-scale circulation is fixed. This unique link is not shared with any other ocean tracer, such as &lt;span&gt;Chlorofluorocarbons&lt;/span&gt; (CFCs). At the same time, ocean excess carbon storage patterns are mostly unchanged whether the large-scale circulation is free to evolve, or fixed to the pre-industrial circulation pattern, as the climate warms. Here, we interpret the reason for this behavior by breaking ocean carbon storage into two parts: uptake of atmospheric anomalies by the surface ocean, and subsequent internal storage by the ocean&amp;#8217;s circulation. We show that the patterns of surface ocean carbon anomalies are dictated by mean state biogeochemical properties and therefore mostly unchanged by circulation changes. Furthermore, surface biogeochemical properties are strongly shaped by the ocean temperature, providing a link between ocean heat and carbon uptake. CFCs on the hand, lack chemical buffering and therefore the patterns of CFC storage do not correlate with heat as much as carbon patterns do. The patterns of surface anomalies ultimately explain most of the differences in how temperature, carbon and CFCs are stored by the ocean, while changes in internal pathways are of secondary importance. Furthermore, the ratio of total ocean carbon and heat storage is roughly constant across warming scenarios and climate models, which might have further implications for relating ocean carbon storage to important climate metrics, such as the transient response to cumulative emissions.&lt;/p&gt;


2011 ◽  
Vol 7 (3) ◽  
pp. 771-800 ◽  
Author(s):  
T. Tschumi ◽  
F. Joos ◽  
M. Gehlen ◽  
C. Heinze

Abstract. The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.


Sign in / Sign up

Export Citation Format

Share Document